Est. in 1921

UNION CHRISTIAN COLLEGE (AUTONOMOUS) ALUVA

Affiliated to Mahatma Gandhi University, Kottayam, India NAAC Accredited with A++ Grade in Vth cycle 0484 2609194, +91-7012626868 email: ucc@uccollege.edu.in

DEPARTMENT OF BIOSCIENCES

UG BIOLOGICAL SCIENCES SYLLABUS 2025

UNDERGRADUATE (HONOURS) PROGRAMMES {UCC UGP (HONOURS)}

Adopted from THE MAHATMA GANDHI UNIVERSITY UNDER GRADUATE PROGRAMMES (HONOURS) SYLLABUS MGU-UGP (Honours) (2024 Admission Onwards)

BSc. Biological Sciences Syllabus 2025 UNION CHRISTIAN COLLEGE (AUTONOMOUS) ALUVA

UNION CHRISTIAN COLLEGE, ALUVA (Autonomous)

UNDERGRADUATE PROGRAMMES (HONOURS) SYLLABUS UCU-UGP (Honours) (2025 Admission Onwards)

Faculty: Biosciences BoS: Biological Sciences Subject: Bachelor of Science (Honours) Biological Sciences

CONTENTS

Title

- **1.** Preface
- 2. Board of Studies & External Experts
- **3.** Syllabus Index

4. Semester I

- 1. New biology for the new century
- 2. Introduction to Zoology
- 3. Biochemistry-The Science of Life
- 4. Food, Nutrition and Medicine

5. Semester II

- 5. Preparation of Biological Specimens
- 6. Environmental Biology
- 7. Essentials of Biochemistry: Vitamins, Hormones, Enzymes and Neurotransmitters
- 8. Biological Foundations for Health and Wellness

6. Semester III

- 9. Essentials of Biological Techniques Est. in 1921
- 10. General Microbiology
- 11. Clinical Biochemistry and Clinical Microbiology
- 12. Aquarium Management
- 13. Diverse Animal Life
- 14. Techniques in Biochemistry and Forensic Science
- 15. Science of Organic Farming
- 16. Public Health, Hygiene and Sanitation: An awareness

7. Semester IV

- 17. Genetic Engineering and Plant Tissue Culture
- 18. Cell Biology
- 19. Enzymology
- 20. Research Methodology and Biostatistics
- 21. The Molecules of Life
- 22. Functional Zoology
- 23. Human rights and Gender Equality
- 24. Basic Molecular Techniques
- 25. Internship

8. Semester V

- 26. Developmental Biology
- 27. Molecular Biology
- 28. Genetics
- 29. Immunology
- 30. Introduction to Forensic Biology
- 31. Evolution and Ethology
- 32. Neurobiochemistry

BSc. Biological Sciences Syllabus 2025 UNION CHRISTIAN COLLEGE (AUTONOMOUS) ALUVA

33. Entrepreneurship in Biochemistry

9. Semester VI

- 34. Food and Industrial Microbiology
- 35. Human Physiology
- 36. Biotechnology for Human Welfare
- 37. Introduction to Bioinformatics
- 38. Animal Cell Culture and Stem Cell Biology
- 39. From Lab to Life
- 40. Practical Bioinformatics

10. Semester VII

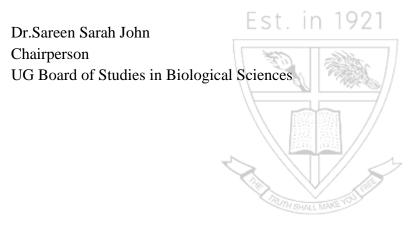
- 41. Microbial Food Safety
- 42. Biotechnology in Clinical Diagnosis
- 43. Biosafety, Bioethics and IPR
- 44. Plant Physiology and Phytochemical Techniques
- 45. Cancer Biology
- 46. Clinical Research and Pharmacovigilance
- 47. Stress Physiology
- 48. Toxicology Studies and Techniques St. in 1921

11. Semester VIII

- 49. Omics approaches in Biotechnology
- 50. Microbial Biotechnology
- 51. Plant Biotechnology
- 52. Biotechnology and Forensic Science
- 53. Plant Microbe Interaction
- 54. Molecular Phylogeny
- 55. Genomics, Proteomics and Nanotechnology
- 56. Project
- 12. Scheme for evaluation of internship programme
- 13. Scheme for Project Evaluation

PREFACE

With great enthusiasm and deep sense of responsibility, we, the Board of Studies in Biological Sciences, Union Christian College (Autonomous), Aluva present this preface to the meticulously designed curriculum and syllabus, adopted from the Board of Studies in Zoology, Mahatma Gandhi University, for the Four-Year Undergraduate Program (FYUGP) in Biological Sciences at our institution. We extend our sincere gratitude to the Board of Studies in Zoology, Mahatma Gandhi University, for their exceptional work in developing this comprehensive and forward-thinking syllabus.


University Grants Commission has put forward the concept of Four Year Under Graduate Program which envisions a paradigm shift from a teacher-centric to student-centric higher education system in India. The same has been recommended for implementation by Kerala Higher Education Council. As per the Regulations of Mahatma Gandhi University, Board of Studies of Zoology has designed a curriculum which gives importance to skill - based education where the graduate attributes are first set to design the programs, courses and supplementary activities.

The Four Year undergraduate program in Biological Sciences is designed to equip students with a strong foundation in various fields of Biology while addressing the emerging trends and challenges in areas such as Molecular Biology, Biotechnology, and Environmental Sustainability. The Bachelor of Science (Honours) in Biological Sciences is a dynamic and interdisciplinary program designed to provide students with a solid foundation in the principles, practices, and frontiers of modern biology. This course explores the diversity of life, from the molecular and cellular levels to the complexity of ecosystems and evolutionary processes. As the world faces growing challenges in health, environment, and sustainable development, the role of biological sciences has never been more critical. This syllabus aims to equip students not only with theoretical knowledge but also with practical skills in research, critical thinking, and scientific communication.

The curriculum integrates core biological concepts with opportunities for specialization and hands-on laboratory experience. It is structured to foster curiosity, innovation, and a lifelong appreciation for the living world. In an era where biological research is at the forefront of addressing global challenges such as disease outbreaks, climate change, food security, and biodiversity loss, this course offers students both relevance and opportunity. Graduates of this program are well-prepared for diverse career paths. They may pursue opportunities in research institutions, healthcare and diagnostics, pharmaceuticals, environmental agencies, biotechnology companies, and agricultural industries. Additionally, the course lays a strong groundwork for those seeking to advance their studies through postgraduate education in specialized fields such as Molecular Biology, Bioinformatics, Biomedical Sciences, or Environmental Biology.

The curriculum framework provides an exit option at the end of third year, with BSc Degree in Biological Sciences. Continuing into the fourth year a student can either opt for BSc Honours in Biological Sciences, or BSc Honours with Research in Biological Sciences. The learning outcomes-based curriculum framework is intended to provide a comprehensive foundation to the subject and to help students develop the ability to successfully continue with further studies and research in the subject while they are equipped with required skills at various stages. A student of BSc Biological Sciences (Honours) with Research have to undertake a **research project** of 12 credits. It offers several significant benefits, promoting inquiry-based learning, where students take an active role in driving their own learning process and develop a strong foundation for future academic or professional endeavours in the field of their interest and spark further inquiry. The **Internship** during the summer vacation of second year provides students with the opportunity to gain real-world experience in their chosen field of study. It offers the chance to develop and enhance a wide range of skills, including communication, teamwork, problem-solving, time management, adaptability and professional growth. The framework is designed to equip students with valuable cognitive abilities and skills so that they are successful in meeting diverse needs of professional careers in a developing and knowledge-based society.

By fostering scientific curiosity, innovation, and ethical responsibility, this program aspires to cultivate not only skilled professionals but also conscientious citizens capable of making meaningful contributions to both science and society. In conclusion, we eagerly anticipate guiding students through this enriching journey across the diverse landscapes of Biological Sciences. We hope this syllabus serves as a gateway to a transformative academic experience one that lays a solid foundation for lifelong learning and impactful contributions.

BOARD OF STUDIES FOR BSC BIOLOGICAL SCIENCES PROGRAMME

SL NO.	NAME	POSITION
1	Dr. Sareen Sarah John Head, Department of Biosciences,	Chairperson
2	Assistant Professor, Union Christian College, Aluva. Mr. Shyam Mohan Associate Professor, Union Christian College	Members
4	Dr. Jyothilekshmi S, Associate Professor, Union Christian	Wiember s
3	College	Members
4	Mr. Varghese Thomas K, Assistant Professor, Union Christian College.	Members
5	Mrs. Mary Jose, Assistant Professor, Union Christian College	Members
6	Mrs. Merin K Eldo (On Ph.D leave), Assistant Professor, Union Christian College.	Members
7	Mrs. Asha M.P, Assistant Professor, Union Christian College.	Members
8	Mrs. Bincy Jacob, Assistant Professor, Union Christian College	Members
9	Mrs. Sherin Annie Abraham , Assistant Professor, Union Christian College.	Members
10	Mr. Vipin Thomas, Assistant Professor, Union Christian College.	Members
11	Mrs. Chitra Rajagopal, Assistant Professor, Union Christian College.	Members
12	Ms. Stephy Mol Robinson, Assistant Professor, Union Christian College.	Members
13	Dr. Honey Sebastian , Professor, Department of Zoology, Vimala College (Autonomous), Thrissur.	Members
14	Dr. Pournami P , Assistant Professor, Post Graduate and Research Department of Zoology, St. Stephens College, Pathanapuram.	Members
15	Prof. Dr. Mini K D , Professor, Department of Zoology, SreeSankara College, Kalady	Members
16	Dr. Oommen K. Mathew, Associate Director, Medgenome Lab's Kochi	Members
17	Mr. Arun Hari, Regional Business Manager, 4 basecare Kochi	Members
18	Dr. Nayana Jose. C., Assistant Professor & HOD, Department of Biochemistry, The Cochin College, Kochi.	Members
19	Mrs. K. Leena Joseph , Assistant Professor & HOD, Department of Zoology, Morning Star Home Science College, Angamaly	Members
20	Dr. Sherin Antony, Assistant Professor & HOD, Department of Zoology, Bharata Mata College (Autonomous), Thrikkakara	Members
21	Dr. Anu Anto, Assistant professor in Zoology,, St. Xavier's college for Women (Autonomous), Aluva	Members
22	Dr. Aneymol V S , Assistant Professor, Department of Zoology,St. Xavier's College (Autonomous), Aluva.	Members

.Syllabus Index

Name of the Major: Biological Sciences

Semester: I

		Type of the	Credit	Hours/		H	our	
Course	Title of the Course	Course DSC,		week	Dist	ributio	n/we	eek
Code		MDC, SEC						
		etc.			L	Т	Р	0
	New biology for the new	DSC A	4	5	3	0	2	
UC1DSCBTS100	century							
	Introduction To	DSC A	4	5	3	0	2	
UC1DSCZGY100	Zoology							
		DSC A	4	5	3	0	2	
UC1DSCBCH100	Biochemistry-The							
	Science of Life							
	Food, Nutrition and	MDC	3	4	2	0	2	
UC1MDCBTS100	Medicine Est	in 1921						
			4.	0 0				

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others

Semester: II

			Credit	Hours/		Hou	ır	
Course	Title of the Course	Type of the		week	Dist	ributic	on/wee	ek
Code	er.	Course DSC,	1-					
		MDC,SEC			L	Т	Р	0
	No.	etc.						
	Preparation of Biological	DSC A	4	5	3	0	2	
UC2DSCBTS100	Specimens							
UC2DSCZGY100	Environmental Biology	DSC A	4	5	3	0	2	
	Essentials of	DSC A	4	5	3	0	2	
UC2DSCBCH100	Biochemistry: Vitamins,							
UC2DSCBCH100	Hormones, Enzymes and							
	Neurotransmitters							
	Biological Foundations for	MDC	3	4	2	0	2	
UC2MDCBTS100	Health and Wellness							

Semester: III

						Hou		
Course		Type of the	Credit	Hours/	Distri	bution/	/week	
Code	Title of the Course	Course DSC,		week				
		MDC, SEC etc.			L	Т	Р	0
	Essentials of Biological	DSC A	4	5	3	0	2	
UC3DSCBTS200	Techniques							
UC3DSCBTS201	General Microbiology	DSC A	4	5	3	0	2	
	Clinical Biochemistry and		4	4	4	0	0	
UC3DSEBTS200	Clinical Microbiology	DSE (Any 1)						
UC3DSEBTS201	Aquarium Management		4	4	4	0	0	
UC3DSCBTS202	Diverse Animal Life	DSC B	4	5	3	0	2	
	Techniques in	DSC B	4	5	3	0	2	
UC3DSCBCH202	Biochemistry and							
	Forensic Science $F \leq t$	in 1921						
UC3MDCBTS200	Science of Organic	MDC	3	3	3	0	0	
UCJNIDCD15200	Farming							
	Public Health,	VAC	3	3	3	0	0	
UC3VACBTS200	Hygiene and							
UUS VACD 15200	Sanitation: An							
	awareness							
			7					

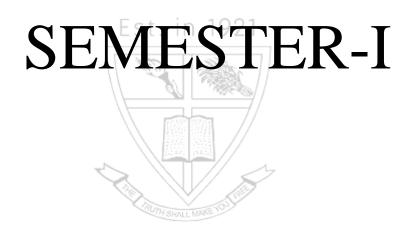
	Seme	ester: IV						
	1	Y SHALL MAKE YOU				Hou	r	
Course		Type of the	Credit	Hours/	Distril	oution	/week	
Code	Title of the Course	Course DSC,		week	L	Т	Р	0
		MDC,SEC etc.						
	Genetic Engineering and	DSC A	4	5	3	0	2	
UC4DSCBTS200	Plant Tissue Culture							
UC4DSCBTS201	Cell Biology	DSC A	4	5	3	0	2	
UC4DSEBTS200	Enzymology		4	4	4	0	0	
UC4DSEBTS201	Research Methodology	DSE (Any 1)	4	4	4	0	0	
UC4DSED15201	and Biostatistics							
UC4DSCBTS202	The Molecules of Life	DSC B	4	5	3	0	2	
UC4DSCBTS203	Functional Zoology	DSCB	4	5	3	0	2	
UC4VACBTS200	DSC B	VAC	3	3	3	0	0	

UC4SECBTS200	UC4DSCBTS203	SEC	3	3	3	0	0	
UC4INTBTS200	Internship	INT	2					

Semester: V

			-					
				Hours/		Ho	our	
Course		Type of the	Credit	week	Di	stributi	ion/we	ek
Code	Title of the Course	Course DSC,						
		MDC,SEC etc.			L	Т	Р	0
UC5DSCBTS300	Developmental Biology	DSC A	4	5	3	0	2	
UC5DSCBTS301	Molecular Biology	DSC A	4	5	3	0	2	
UC5DSCBTS302	Genetics	DSC A	4	4	4	0	0	
UC5DSEBTS300	Immunology	DSE	4	4	4	0	0	
UC5DSEBTS301	Introduction to Forensic Biology	S D SE (Any 1) 21	4	4	4	0	0	
UC5DSEBTS302	Evolution and Ethology		4	4	4	0	0	
UC5DSEBTS303	Neurobiochemistry		4	4	4	0	0	
UC5SECBTS300	Entrepreneurship in Biochemistry	SEC	3	3	3	0	0	

Semester: VI


		SHALL MARS		Hours/		Hou	ır	
Course		Type of the Course	Credit	week	Dist	ributio	n/wee	k
Code	Title of the Course	DSC, MDC,SEC			L	Т	Р	0
Code		etc.						
UC6DSCBTS300	Food and Industrial	DSC A	4	5	3	0	2	
000050015500	Microbiology							
UC6DSCBTS301	Human Physiology	DSC A	4	5	3	0	2	
	Biotechnology for	DSE	4	5	3	0	2	
UC6DSEBTS300	Human Welfare							
UC6DSEBTS301	Introduction to		4	4	4	0	0	
UCODSED I SSUI	Bioinformatics	DSE (Any 1)						
	Animal Cell		4	4	4	0	0	
UC6DSEBTS302	Culture and Stem							
	Cell Biology							
UC6VACBTS300	From Lab to Life	VAC	3	3	3	0	0	
UC6SECBTS300	Practical Bioinformatics	SEC	3	3	3	0	0	

		Semester: VII						
		Type of the		Hours/		Hour		
Course	Title of the Course	Course DSC,	Credit	week	Distrib	ution/w	veek	
Code		MDC, SEC etc.			L	Т	Р	0
UC7DCCBTS400	Microbial Food	DCC	4	5	3	0	2	
UC/DCCD15400	Safety							
	Biotechnology in		4	4	4	0	0	
UC7DCCBTS401	Clinical Diagnosis	DCC						
	Biosafety, Bioethics	DCC	4	4	4	0	0	
UC7DCCBTS402	and IPR							
	Plant Physiology		4	4	4	0	0	
UC7DCEBTS400	and Phytochemical							
	Techniques							
UC7DCEBTS401	Cancer Biology		4	4	4	0	0	
UC/DCED15401		DCE (Any 3)						
	Clinical Research	Eat in 100	4	4	4	0	0	
UC7DCEBTS402	and	Est. in 192	1					
	Pharmacovigilance	states the						
UC7DCEBTS403	Stress Physiology		4	4	4	0	0	
UC7DCEBTS404	Toxicology Studies		4	4	4	0	0	
UCIDCED15404	and Techniques							

Semester: VII

Semester: VIII

	Ŷ	STUTH SHALL MARE TO				Н	our	
Course		Type of the Course		Hours/	Distril	outio	n/wee	•
Code	Title of the Course	DSC, MDC,SEC etc.	Credit	week	k			
					L	Т	Р	0
UC8DCCBTS400	Omics approaches in		4	5	3	0	2	
UCODCCD15400	Biotechnology	DCC						
UC8DSCBTS401	Microbial Biotechnology	DCC	4	5	3	0	2	
	Plant Biotechnology		4	5	3	0	2	
UC8DSEBTS400								
	Biotechnology and		4	5	3	0	2	
UC8DCEBTS401	Forensic Science							
UC8DCEBTS402	Plant Microbe Interaction	DCE (Any 3)	4	5	3	0	2	
	Malagular Dhylagany		4	5	3	0	2	
UC8DCEBTS403	Molecular Phylogeny		4	3	3	U	L	
	Genomics, Proteomics		4	5	3	0	2	
UC8DCEBTS404	and Nanotechnology							
UC8PRJBTS400	Project	PRJ	12					

Programme	BSc (Honours) Biologica	al Sciences	1			
Course Name	NEW BIOLOGY FOR T	HE NEW C	CENTURY			
Type of	DSC A					
Course						
Course Code	UC1DSCBTS100					
Course	100					
Level						
Course	Introductory level course f	for understa	anding the g	eneral outlo	ok of the world	of diverse
Summary	life forms, their emergenc	e, organiza	tion and div	versity. The	molecular mac	hinery of
	organisms, selected techni	iques used	to learn the	m and their	impact on worl	d welfare
	and research are studied k	eeping the	future in m	ind.		
Semester	Ι	Cre	dits		4	Total
	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Course		3	0	1	Case Studies	75
Details					Group work	
	F	st in	1921		Seminars	
		St. III			Presentations	
Pre-	None	30			1	
requisites, if	//	10	1990 - S.			
any	//		//			

СО		Learning	РО
No.	Expected Course Outcome	Domain*	No
1	Understand the fundamental principles and concepts that govern	U	2,3,10
	the living world enabling the organisms to exist through various	_	<i>y- y -</i>
	levels of biological organization.		
2	Categorize and identify group organisms based on their cellular	K	2,3,10
	structures and biological classification		
3	Identify and classify different types of biomolecules based on	K	2,3,10
	their function		
4	Understand the basic principles of molecular genetics and gene	U	2,3,10
	expression		
5	Analyze the relationships of biomolecules and how it contributes	An	2,3,10
	to the overall function of cell and organism		
6	Understand the basic principles behind evolution of life forms and	U	2,3,10
	environmental biology		
7	Explore the milestones and techniques used for the advancements	E	2,3,10
	and emerging trends in the field of modern day applied biology		

COURSE OUTCOMES (CO)

8	Develop thinking abilities through the analysis of case studies and	An	2,3,10			
	articles related to biological studies					
9	Understand the evolving global challenges and its impact on the	U	2,3,10			
	various aspects of the world					
10	Understand some of the modern day concerns of the world and	U, An	2,3,7,10			
	think how they can be addressed using the technologies in Biology					
* <i>R</i>	*Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S),					
	Interest(I) and Appreciation(Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			45	No.
	1.1	The living world , the five kingdom	5	1,2
		Classification by Whittaker		
1	1.2	Prokaryotic and eukaryotic cell structures; The	5	1,2,3
		structural composition and the biomolecular dissection		
		of the cell.		
	1.3	Organisms as molecular machines driving the genetic	5	1,3,4,5
		flow of information. The era of the		
		genetic code		
	2.1	Cell cycle and cell division.	5	1,4,5
		Genes defining the organizational fabric of life. The		
•		principles of inheritance and variation.		1.5
2	2.2	Emergence; Key aspects of evolution,	5	1,6
		misconceptions and evidences. Origins of life		
		(Darwin), Mechanism and concept of Mutation		1.6
	2.3	Organism and its environment. Concepts of	3	1,6
		population and ecosystem. Biodiversity		
	3.1	Introduction to emerging branches which are poised to		
		accelerate discovery and predictability in design and		
		support of research, medicine, agriculture and		
		manufacturing.	5	7
		Biotechnology Bioinformatics		
		The 'Omics' approaches		
		Nanotechnology		
3		Important biological techniques for visualization and		
		understanding chemistry of cells		7
	3.2	Microscopy, histochemical and biochemical	4	
		techniques.		

	3.3	Important biological techniques for structural, cellular and molecular studies; NMR ,X-ray crystallography, Flow cytometry and radioisotope techniques	4	7
	3.4	Important molecular techniques; Cloning, Monoclonal Antibody technology, Sequencing technology. Bioinformatics	4	7
		PRACTICAL	30	
	4.1	Case studies and identification of the important milestones which have improved human welfare and the role played by biological techniques in • prevention and treatment of infectious diseases • enhanced agricultural productivity and food security • health care diagnosis • drug development and therapy • research Est in 1921 (Group work)	10	8,9,10
4	4.2	Case studies on global issues which can be addressed using technologies in life sciences (a) Climate Change (b) Food Security (c) Disease prevention and management (d) Environmental conservation & water management (e) Aging population (Group work)	10	8,9,10
	4.3	Scientific breakthroughs in Biology Antibiotics Hela Cell line Double Stranded structure of DNA PCR Gene Therapy Fluorescent Protein HGP RNAi Crispr-Cas9 (Student Presentations on working knowledge of the technologies listed above)	10	7, 8,9,10
5		Teacher Specific Module		
Teaching	gand	Classroom Procedure (Mode of transaction)		
Learning		Lectures, group interactions, group seminar, power point, case st Teaching aids used- Audio Visual Presentation, Photographs, Inter-		ources

	MODE OF ASSESSMENT					
	A. Continuous Comprehensive Assessment (CCA)					
Theory Total = 25 marks						
Assessment	Test Papers/Assignments/Seminars					
Types	Practical Total= 15 marks					
	Case Study presentations					
	Chart/Visual presentations					
	Case Study Reports					
	B. End Semester Examination					
	Theory Total = 50 marks (Duration 1.5 hrs)					
	Multiple Choice Questions $(10 \text{ X} 1) = 10 \text{ marks}$					
	Short Questions (10 out of 12) X 2= 20 marks					
	Short essays (5 out of 7) X $4=20$ marks					
	Practical Total =35 marks (Duration 2hrs)					
	Record= 10 marks					
	Viva= 5 marks					
	Case Study Report=5 marks					
	Examination=15 marks					

References

- 1. Agarwal, S. R., & Agarwal, S. K. (2019). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. New Delhi, India: S. Chand Publishing.
- 2. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell. Garland Science.
- 3. Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2007). Evolution. Cold Spring, Harbour Laboratory Press.
- 4. Brooker, R. J. (2017). Genetics: Analysis and principles. McGraw-Hill Education.
- 5. Campbell, N. A., & Reece, J. B. (2019). Biology. Pearson.
- 6. Gupta, P. K. (2018). A Textbook of Plant Physiology, Biochemistry, and Biotechnology. New Delhi, India: Rastogi Publications.
- 7. Hall, B. K., &Hallgrimsson, B. (2008). Evolution. IV Edition. Jones and Bartlett Publishers.
- 8. Johnson, G. B., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology. McGraw-Hill Education.
- 9. Kormondy, E. J. (1996). Concepts of Ecology. Prentice Hall, U.S.A. 4th edition.
- 10. Kumar, H., &Tyagi, R. (2015). A Comprehensive Textbook of Applied Biology. New Delhi, India: S. Chand Publishing.

- 11. Mader, S. S., &Windelspecht, M. (2020). Essentials of Biology. McGraw-Hill Education.
- 12. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry. W.H. Freeman.
- 13. Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing.
- Sharma, P. D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.

SUGGESTED READINGS

- 1. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. (2009). The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco.
- 2. Cooper, G.M. and Hausman, R.E. (2009). The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 3. De Robertis, E.D.P. and De Robertis, E.M.F. (2006). Cell and Molecular Biology. 8th edition. Lippincott Williams and Wilkins, Philadelphia.
- 4. Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of Genetics. VIII Edition. Wiley India.
- 5. Karp, G. (2010). Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley & Sons. Inc.
- Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. V Edition. John Wiley and Sons Inc.

Programme	BSc (Ho	BSc (Honours) ZOOLOGY				
Course Name	INTROL	DUCTION T	TO ZOOLO	GY		
Type of	DSC A					
Course						
Course Code	UC1DS0	CZGY100				
Course Level	100					
Course	The cours	se includes s	several mai	rvelous facts	s about the	animal world which
Summary	can foster	r sense of i	interest, co	nnection, e	mpathy and	caring towards the
	animals. 7	They feel res	ponsible an	d enthusiast	ic to learn	
	more abou	ut the anima	l world.			
Semester	Ι	Credi	its		4	Total Hours
Course	Learning	Lecture	Tutorial	Practical	Others	
Details	Approach	3		1		75
		3		1		13
Pre-						
requisites, if						
any		E	st. in	1921		

COURSE OUTCOMES (CO)

CO		Learning	PO			
No.	Expected Course Outcome	Domains*	No			
1	Identify the wonders of the animal world and the facts behind the	U	2,3			
	phenomena.					
2	Explain Coloration, Mimicry & Parental care.	U	2,3			
3	Discover the research avenues & career opportunities in	U	2,3			
	Zoology					
4	Predict the Entrepreneurial Possibilities in the field of Zoology	Е	1,2,3			
5.	Prepare detailed report of field visits to environmentally	А	2,3			
	important places, research institutions and career orientation					
	centers					
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill					
(S), In	terest (I) and Appreciation (Ap)					

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units Course description			CO No.	
1		Wonders of Animal world	15		
	1.1	Incredible Animal Architects Introduction to Animal Societies			
	1.2	Honeybees – Skilled Engineers of Nature Comb building in Honey bees	7	1	
	1.3	Architectural secret of Termite hills			
	1.4	Weaver Bird-Wonderful Architect			
	Glowing Wonders Bioluminescence – Mechanism Noctiluca – Sparkle of the 1.5 sea Firefly- Stars on earth Octopus – Wild Glowing Wonder Angler fish – the glowing monster				
	1.6	Story of Pearl , Types of Pearl, Pearl Formation, Process of Picking best Pearl			
2		Coloration , Mimicry & parental care	15		
	2.1	Coloration & Mimicry Fakers of Nature- Secret behind Coloration & Mimicry Beautiful Butterflies, Colorful Earthworms, Painted Starfish Blue beauty Frog, Lovely Chameleon, Handsome Peacock Magnificent Owl Butterfly Leaf insect – The Walking leaves	7		
	2.2	Parental care Animal Parenting – Facts & examples Who will take care? Father or Mother. Mother – Velvet Spider - Epitome of sacrifice Father – Water bug - Model father Pregnant Father – Sea Horse Father Brooder – Male Darwin frog. Sophisticated parents – Python parenting Supermom – Humming Bird Aggressive Mother – Otter	8	2	
3		Major Research Areas & Careers in Zoology	15		
	3.1	Exciting avenues for research Bioinformatics, Molecular biology, Biostatistics, Wildlife Biology, Toxicology & Pharmacology, Forensic biology, Physiology, Genetics,	5	3	

	3.2	Microbiology, Immunology, Developmental Biology, Ethology, Biotechnology, Environmental Biology, Animal Systematics, Marine biology, Fisheries, Cell biology, Entomology, Biochemistry, Parasitology, brief description only Attractive career opportunities General - All general UPSC jobs especially IFS (Indian Forest Service), Kerala PSC (all general degree based jobs), jobs in Kerala Forest and wildlife department (Range Forest Officer and Beat Forest officer),Scientists, Research assistants, Lab technicians, Animal house keepers in reputed research centers like ZSI, CSIR, ICAR, RGCB, KFRI, NCBS, TIFR, SACON, BARC, ICZN etc. Jobs in NGOs like WWF, ATREE, Wildlife SOS, Wildlife Trust of India, Center for Wildlife Studies, Nature Conservation Foundations etc. Specific - Entomologist in Vector control board and in research institutes like KFRI; Teaching; Biologist and Curator in Museum and Zoological Parks; Fisheries officer in Fisheries department, Junior scientific assistant in pollution control board, District Malaria Officer, forensic assistant in police department and health department; ecologist, conservation biologist and nature education officers in various wildlife sanctuaries and protected areas; jobs in Pharmaceutical companies. Embryologist, Cytological specimen preparation, Cytogeneticist in	5	3
	3.3	diagnostic labs and hospitals. Medical coding Lucrative Entrepreneurial Possibilities Products, byproducts & value added products of: Apiculture, Sericulture, Dairy Farming, Poultry Farming, Pets and their management, Aqua culture (Edible and ergemental) and Vermiculture	5	3,4
4		(Edible and ornamental) and Vermiculture Practical	30	
	4.1	Identification of any 10 specimens coming under the following categories1. Animal architects, 2. Glowing animals,3.Animal mimicry, 4 Animal coloration,5.Parental care.	8	5

	4.2	Search wonders of animal world and make short videos/reports/photos: 1. Animal architects, Glowing animals, 3. Animal mimicry,2.Animal coloration, 5. Parental care.	5	
	4.3	 Field visit - Nature camp, butterfly garden, museum, pearl culture farm.(any 2) Visit to any 2 research institutes Visit and interact with any two entrepreneurs from different fields and submit the report Career Orientation class by experts 	17	
5.		Teacher Specific Module		

EVALUATION AND ASSESSMENT

Teaching and	Classroom Procedure (Mode of transaction)						
Learning	Lecture, group interaction, seminar, presentations						
Approach	Note: Only a brief description of the focal topic is required. Teaching						
	aids like photographs, models, videos, short films,						
	documentaries related to the topic may be used						
	MODE OF ASSESSMENT						
	A. Continuous Comprehensive Assessment (CCA) Theory						
	Total = 25 marks						
	Quiz, Test Papers, seminar						
Practical Total = 15 marks							
	Lab performance, record, field report, entrepreneur interaction report						
Assessment	B. End Semester Examination						
Types	Theory Total = 50 marks, Duration 1.5 hrs						
	Short Essays - 5 out of 7 $x4 = 20$ marks Short						
	questions - 10 out of $12 \times 2 = 20$ marks Fill in the						
	blanks -10x1=10 marks						
	Practicals Total = 35 marks; Duration- 2 hrs Record 10						
	marks,						
	Examination 25 marks: spotter identification - 16 marks Viva - 4						
	marks, research institute visit report- 5 marks						

REFERENCES

- 1. Animal Encyclopedia: Wonders Of Learning Omnibus; North Parade Publishing
- 2. Barnes R. D. (1982) Invertebrates Zoology 6th endn. Toppan International Co
- 3. Barrington, E. J. W. (1969) Invertebrate Structure and functions. English Language Book Society.
- 4. Bhaskaran. K. K. and Biju Kumar. A. (2003). Chordate Zoology. Manjusha

Publications. Calicut.

- 5. Borradile, L.A. (1955) The Invertebrata.2nd endn. Cambridge University Press.3
- 6. Burney D. (2001) Animal; Kayla Morey.
- 7. Carter, G. S. A. (1946) General Zoology of Invertebrates 2nd endn. (Wick and Jackson Ltd., London).
- 8. Colbert, E.H. (1955) Evolution of the Vertebrates. John Wiley and Sons Inc. N.York.
- 9. Ekambaranatha Iyer M. and Anantakrishnan T. N. (1990); Manual of Zoology. Vol. II .S. Viswanathan and Co.
- 10. Frank W. L. (2014). Animal Wonder World; M. Evans & Company.
- 11. Gardinar, M. S. (1972) Biology of the invertebrates, Mc Graw Hill Book Co., New York.
- 12. Halstead, L.B. (1969). The Pattern of Vertebrate Evolution. Freeman and Co. San Francisco. U. S. A.
- 13. Hammerton J.A. (2008). Wonders of Animal Life: by Famous Writers on Natural History; Logos Press India.
- 14. Hobart M. Smith. Evolution of Chordate structure, Holt, Rinehart and Winston. Inc. N. York.
- 15. Jordan E. L. and P. S. Verma. (2002). Chordate Zoology, S. Chand and Co. N.Delhi.
- 16. Kapoor, V.C. (1991) Theory and Practice of Animal Taxonomy. Oxford and IBH Publishing Co., Pvt. Ltd. New Delhi.
- 17. Kotpal, R.L. (1982) Protozoa, Porifera, Coelenterata, Helminthes, Annelida, Arthropoda, Mollusca, Echinodermata and Minor Phyla. Rastogi Publications.
- 18. Meera J.A. (2020). Chordate Zoology of Kerala, Zoological Society of Kerala.
- 19. Moore, R. C. Lalicker, C. G. and Fisher, A. G. (1952) Invertebrate Fossils, Mc. Graw Hill Book Co., New York.
- 20. Waterman, AJ. (1971) Chordate Structure and Function. Macmillan Co. London.
- 21. Young, J.Z. (1950) Life of Vertebrates. Clarendon Press Oxford.

SUGGESTED READING

- 1. Jolie, M. (1968) Chordate Morphology. East West Press.
- 2. Parragon Publishing India. (2023) Fascinating facts Animals.Parragon Publishing India.
- 3. William S. Beck. Karel, F. Liem and George Gaylord Simpson. (2000). Life: An introduction to biology. Harper Collins Publishers, New York.
- 4. Young J.Z. (2006). The life of Vertebrates. Oxford University Press.

Programme	BSc (Honours) l	BSc (Honours) Biochemistry						
Course Name	BIOCHEMISTR	BIOCHEMISTRY-THE SCIENCE OF LIFE						
Type of Course	DSC A							
Course Code	UC1DSCBCH10)0						
Course Level	100-199							
	The primary obj				e			
Course	biochemistry for	students, v	with a focus	on essential	molecular c	components.		
Summary	Additionally, the	course cov	ers fundamen	tal procedure	s within a b	iochemistry		
	laboratory and th	e qualitative	e analysis of b	piomolecules.				
Semester	Ι		Credits		4			
		Lecture				Total		
Course Details	Learning	arning Tutorial Practical Others Hours						
	Approach 3 0 1 0 75							
Pre-requisites, if	Nil							
any		Est. ir	n 1921					

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PO No			
No.		Domains *				
1.	Acquire an understanding of the nature of cells, water, buffers	K, U, I	2, 3, 4, 6,			
	and the scope of Biochemistry		10			
2.	Demonstrate the structure and functions of carbohydrates	K, U, E	1, 2, 3, 4			
3.	Describe the general structure of amino acids and structural organisation of proteins	K,U, E	1,2,3,4			
4.	Evaluate the chemical nature of lipids and nucleic acids.	U, E, An	1, 2, 3, 4			
5.	Demonstrate laboratory safety practices and preparation of solutions.	An, E, Ap	2, 5, 8,10			
6.	Employ appropriate biochemical tests to identify unknown	U, A, C, S	2, 8,10			
	biomolecules					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill(S), Interest						
(I) ar	nd Appreciation (Ap)					

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description		СО
				No.
	1.1	History of Biochemistry.	2	1
	1.2	Cells - the basis of living organisms- prokaryotic and	2	1
		eukaryotic cells.		

1.	1.3	Importance of water in biological systems -	3	1
Introduction to	1.5	interactions in aqueous systems.	5	1
Biochemistry				
Diochemistry		Dissociation of water, ionic product of water, concepts of		
	1.4	pH and pOH, acids and bases, pH scale, Buffers.	3	1
	1.5	Buffers, biological buffers- bicarbonate buffer, phosphate	2	1
	110	buffer, hemoglobin buffer.	-	1
	1.6	Different types of biomolecules and their functional	2	1
		groups.		
	1.7	Scope of Biochemistry.	1	1
	2.1	Classification of carbohydrates	1	2
	2.2	Monosaccharides and their importance (glucose, galactose, mannose and fructose with structures), Isomerism of carbohydrates - D and L forms, epimers, anomers. Disaccharides - sucrose, maltose, lactose	3	2
2.	2.3	Haworth perspective formula and functions of	2	2
Carbohydrate		disaccharides - sucrose, maltose, lactose.		
s and Proteins	2.4	Structure and important properties of the homopolysaccharides — starch, cellulose and glycogen. (without structure) heteropolysaccharide - hyaluronate (without structure)	3	2
	2.5	Name (with one letter and three letter code) of the 20 standard amino acids, general structure of amino acid. Zwitter ions.	3	3
	2.6	Elementary study of primary, secondary, tertiary and quaternary structural levels in proteins.	3	3
3.		Classification and functions of lipids, Fatty acids -		
Lipids and	3.1	structures of stearic acid, oleic acid and linoleic acid.	2	4
Nucleic Acids	3.2	Structure and significance of triacylglycerol phosphatidic acid, lecithin and cholesterol.	3	4
	3.3	Chemical nature of nucleic acids- purines and pyrimidines, deoxyribose, ribose, nucleosides, nucleotides. Phosphodiester linkage.	4	4
	3.4	Watson-Crick model of DNA, Chargaff rule, Different forms of DNA-A, B and Z DNA. Introduction to types of RNA (mRNA, rRNA and tRNA). Central Dogma	6	4
	5.1	Laboratory Safety Practices, Preparation of normal,	0	•
	4.1	molar, percentage solution and dilution of stock solutions. Determination of pH using a pH meter.	6	5
4 .	4.2	Systematic analysis of carbohydrates and	10	6
Practical		aminoacids in the given unknown samples.	-	
	4.3	Qualitative analysis of lipids and nucleic acids	9	6

	4.4	Industry/ Laboratory visit	5	6
5. Teach	er specif	ic content/ Teacher facilitated activities		

Teaching	Classroom Procedure (Mode of transaction)
and	The course content will be transacted through Lectures, E-learning, Seminars,
Learning	presentations, Group activity, Interactive sessions and Laboratory sessions
Approach	
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory 25 marks
Assessment	1. Poster making/model building (2 marks)
Types	2. Seminar presentation/Quiz (5 marks)
	3. Involvement in group discussion (3 marks)
	4. Multiple Choice questions (10 marks)
	5. Assignment (2 marks)
	6. Open book test (3 marks)
	Practical 15 marks*
	1. Viva (5 marks) Est. in 1921
	2. Record (5 marks)
	3. Laboratory involvement (5 marks)
	*This mark to be converted to 7.5 marks
	B. End Semester Examination (ESE)
	Theory Total = 50 marks, Duration 1.5 hrs
	A Multiple Choice Questions 5 out of 5 (1 mark each) 5
	x = 5 B Fill in the Blanks 5 out of 5 (2 marks each) 5 x
	2 = 10
	C Short Answer 5 out of 7 (3 marks each) $5 \times 3 = 15$
	D Short Essay 4 out of 6 (5 marks each) $4 \ge 5 = 20$
	Practical examination (35 marks)*
	*This mark to be converted to 17.5 marks

References

1. Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &

Co Ltd.

- Berg J.M., Gatto G.J., Hines J, Tymoczko J.L., Stryer L. (2023) Biochemistry (10thed.) W.H. Freeman &. Co Ltd.
- 3. West E.S., Todd W.R., Mason H.S., Van Bruggen J.T., (2017) Text Book of Biochemistry (4th ed.)
- 4. Voet D., Voet J., Pratt C.W., (2018) Voet's Principles of Biochemistry (5th ed.)
- 5. Rastogi V. B., Aneja K.R.,(2020) Zubay's Principles of Biochemistry (5th ed.)

Suggested Readings

1. Das D., (2015) Biochemistry (14th ed.) Academic publishers

Programme								
Course Name	FOOD, NUTRITION AND MEDICINE							
Type of Course	MDC							
Course Code	UC1MDCBTS100							
Course Level	100							
Course	Foundations of Nutriti	ional Bioch	emistry- B	asics of imp	ortance and	the role of		
Summary	food for health							
Semester	I		Credits		3	Total		
		Lecture	Tutorial	Practical	Others	Hours		
Course Details	Learning Approach							
		2	0	1	0	60		
Pre-requisites,	Nil							
if any								

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PO No			
No.	Est in 1921	Domains *				
1	To understand the importance of health for quality living and health hazards	U	2,3,10			
2	To acquire knowledge about the role of food for sound health.	A	2,3,10			
3	To learn the impact of different nutraceuticals and functional foods on health	An	2,3,10			
4	To understand phytochemical components and its management on health and diseases	U	2,3,10			
5	To apply basic nutrition knowledge in making foods choices and obtaining an adequate diet.	A,K	2,3,10			
6	To gain competence in connecting the role of various nutrients in maintaining health and learn to enhance traditional recipes	A,An,C,I	2,3,9,10			
7	To gain knowledge about principles of diet therapy and different therapeutic diets.	E,S	2,3,10			
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),					
Intere	est (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 30	CO No.
		Food and health		
1	1.1	 Health – Definition, meaning of health and factors affecting health. Health hazards – environment, population explosion, explosives, adulteration, dampness and measures to prevent health hazard. 	2	1
	1.2	Food for health promotion-Definition of food, Nutrition, Nutrients and Nutritional status. Functions of food – Physiological, psychological and socio - cultural functions, constituents of food and their functions	3	1,2
	1.3	 Principles of nutrition Introduction to Nutrition - General introduction, history of Nutrition. Energy - Definition of Kilocalories, Joule, energy value of foods. Basal metabolic rate definition, Factors affecting BMR. Energy requirements and recommended dietary allowance (RDA) for infants, children and pregnant women. Carbohydrates, Proteins, Fats and Lipids- Functions, sources, utilization, requirement and important functions 	8	1,2
	1.4	Vitamins – Fat soluble vitamins –A, D, E and K- functions, source, requirements, deficiency disorders. Water soluble vitamins – The B-complex vitamins – Thiamine, Riboflavin, Niacin, Folic acid, Biotin, Pantothenic acid, B12 and Vitamin C - functions, source, requirements and deficiency disorders	8	2,3
	1.5	Minerals - General functions in the body, classification- macro and micro minerals. Micro minerals – Iron, Fluorine, Zinc, copper, Iodine -functions, absorption, utilization, requirements, deficiency and toxicity. Macro minerals – Calcium & phosphorus - functions, absorption & utilization of iron, deficiency and toxicity. Water Balance – Functions of water, water distribution, maintenance of water and regulation of acid-base balance in the body.	5	2.3
2	2.1	Functional food and nutraceuticalsDefinition and source-Functional foods and	2	2.3,4

	2.2	 Nutraceuticals. Development of functional foods, challenges and safety considerations, Future trends of functional foods. Types of functional foods: whole foods, enriched foods, enhanced foods, fortified foods, modified foods. Dietary supplements and fortified foods- its need, health benefits and adverse effects. Functional foods of animal origin: Diary products, sea foods, egg. Functional foods of plant origin: fruits, vegetables, nuts, spices, cereals. Probiotics, prebiotics and synbiotics as functional foods, 	1	3,4
2	2.3	current trend and effects of probiotics on health Nutraceutical and herbal nutraceuticals. Phytochemicals, phytosterols and other bioactive compounds, peptides and proteins, carbohydrates, lipids, vitamins and minerals- their sources and role in promoting human health. Current and future trends.	1	4
		PRACTICALS Case Studies on	30	
3	3.1	 Objectives of diet therapy - Role of a dietitian. Principles of diet preparation and counselling. Normal diet in the hospitals -, liquid, semi liquid, light, soft diet, bland diet and regular diet, Different types of Feeding. Therapeutic diets for the following disorders: a) Obesity - definition, etiology, treatment. b) Diseases of the gastro intestinal tract- ulcer, constipation & diarrhoea c) Diseases of the liver and gall bladder (risk factors and diet therapy) d) Diseases of the cardio vascular system (risk factors and diet therapy) e) Diabetes mellitus – Types, causes, symptoms, biochemical changes, insulin, hypo-glycemic drugs, dietary management. f) Diseases of the kidney and urinary tract. 	8	5,6,7
	3.2	Case studies on1. The impact of processed foods on the health of individuals, comparing the nutritional content of processed versus whole foods and analyzing the potential long-term health effects.2. The prevalence of food allergies in children and	8	5,6,7
		how diet modifications can help prevent allergic reactions and improve overall health.		

3.3	 3.How access to nutritious foods can improve health outcomes and reduce the risk of malnutrition. 4.Relationship between gut health and mental health, exploring the role of probiotics, prebiotics, and dietary fiber in supporting a healthy microbiome and improving mood and cognitive function. 	8	5,6,7
3.4	Nutritional status assessment of the critically ill patients, complications, nutritional support systems for the critically ill, commercial feeding formulas and special diets for critically ill.	6	5,6,7
4	Teacher Specific Module		

	Classroom Procedure (Mode of transaction)
Teaching and	Lectures, group interactions, group seminar, power point presentations, case
Learning	studies
Approach	Teaching aids used- Audio Visual Presentation, Photographs, Internet Resource
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory Total = 15 marks
Assessment	Test Papers/Assignments/Seminars
Types	Practical Total= 15 marks
	Timely submission of Records
	Chart/Visual presentations
	Diet assessment study
	B. End Semester examination
	Theory Total = 35 marks (Duration 1hr)
	Multiple Choice Questions $(5X1) = 5$ marks
	Short Questions (5 out of 7) $X 2 = 10$ marks
	Short essays (5 out of 7) X $4=20$ marks
	Practical Total =35 marks (Duration 2hrs)
	Record = 10 marks
	Viva= 5 marks
	Case Study Report=5 marks
	Practical case study= 15 marks

References

- 1. Antia, F.P. (1987). Clinical Dietetics and Nutrition. Oxford University Press.
- 2. Bamji, M.S., Krishnaswamy, K., & Brahmam, G.N.V. (2009). Textbook of Human Nutrition (3rd ed.). Oxford and IBH Publishing Co. Pvt. Ltd.
- 3. Dash, B. N. (2003). Health & Physical Education (1st ed.). Neelkamal Publications.
- 4. Essentials of Food & Nutrition Vol. II. (n.d.). Dr. M. Swaminathan. Bappco.
- 5. Ghosh, D., et al. (2012). Innovations in Healthy and Functional Foods. CRC Press.
- 6. Krause, L.K., & Mahan, E. (n.d.). Food, Nutrition and Diet Therapy (6th ed.). W.B. Saunders Company.
- 7. Madhavi, D.L., Deshpande, S.S., &Salunkhe. (1995). Food Antioxidants: Technological, Toxicological and Health Perspective. CRC Press.
- 8. Normal and Therapeutic Nutrition. (n.d.). Robinson, et al. Mac Millan Pub. Co.
- 9. Shakuntalamanay, N., & Shadaksharaswam, M. (2008). Food Facts and Principles (3rd ed.). New Age International.
- 10. Sizer, F., & Whitney, E. (2000). Nutrition Concepts and Controversies (8th ed.).
- 11. Srilakshmi. (2002). Dietetics (4th ed.). New Age International (P) Limited, Publishers.
- 12. Understanding Nutrition. (1996). Whitney, P.N., & Roes, S.R. West Publication Co.
- 13. Wildman, R.E.C. (2001). Handbook of Nutraceutical and Functional Foods. CRC Press.
- 14. Yadav, S. (1997). Basic Principles of Nutrition (1st ed.).

Programme	BSc (Honours) Biological Sciences									
Course Name	PREPARATION OF BIOLOGICAL SPECIMENS									
Type of	DSC A	DSC A								
Course										
Course Code	UC2DSCBTS100									
Course	100									
Level										
Course	The student will acqui	re basic kn	owledge on	the classific	The student will acquire basic knowledge on the classification and life cycles of					
	plants and animals. They get skills on collection, preparation and preservation of									
Summary	plants and animals. Th	ey get skill	s on collect	ion, preparati	ion and pres	•				
Summary	plants and animals. The biological specimens.	ey get skill	s on collect	ion, preparati	ion and pres	•				
Summary Semester	-	ey get skill	s on collect Credits	ion, preparati	ion and pres	•				
	biological specimens.	ey get skill		ion, preparati	-	Total				
Semester	biological specimens.		Credits		4	ervation of				
Semester Course	biological specimens.		Credits		4	Total				
Semester Course	biological specimens.	Lecture	Credits Tutorial	Practical	4 Others	Total Hours				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
1	Understand the basic knowledge about collection and preservation of biological specimens	U	2			
2	Understand the basic knowledge about animal classification and its life cycle.	U	2,3			
3	Acquire skill of different methods of animal specimen preparation techniques.	U, S	2,3,10			
4	Understand the basic knowledge about plants classification and anatomy.	U	2,3,9,10			
5	Acquire skill of different methods of plant specimen preparation techniques.	U, S	2,3,9,10			
	*Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)					

Module Units **Course description** Hrs CO No. 45 1.1 General Concepts of specimen preservation, Types, collection 2 1 techniques-(Baerman funnel, Berlese funnel, Dreger, orange peel bucket, dippers, sampling method, plankton net and night lighting. Transect and Quadrat method. 2 1. 1.2 Preservatives and their usage, field note, labeling, and 1 transportation and storage, Precaution measure for preservation. 1.3 Rules and laws for collecting specimen. 1 1 2.1 Brief classification, Collection and preservation of Invertebrates-(Protista, porifera, coelenterate, ctenophore, Platyhelminthes, 12 1.2 Nematoda, Annelida, Arthropoda, Mollusca and Echinodermata). 2 Collection and preservation technique (any two method) 2.2 Brief classification, Collection and preservation of Vertebrates-(Pisces, aves, amphibians, reptiles and mammals). 8 1.2 Collection and preservation technique (any two method) 3.1 Brief classification of plants, Basics of plant anatomy: simple 4 4 tissue, complex tissues 3.2 Where and how to collect plants? 3 5 Methods of preparation and storage of herbarium sheets and museum specimens. 3.3 Preparation of life cycles of specimens (any 5), Alizarin 3 skeleton preparation, 7 3 staining, Articulated Dermestid technique, Resin embedded specimen, preparation of sections involving microtome and cryostat, Taxidermy. 3.4 Staining: Simple stains, double stains, special stains, HE 3 4 staining. Temporary and permanent slide preparation. 3.5 Collection of plants, preservation of plants: dry (display box, Ricker box, herbarium and wet preservation (special preservatives) and 3 5 storage. 30 PRACTICAL 1. Whole mount preparation of small animals, parts of animals and plants 2. Alizarin preparation of small invertebrates 3. Preparation of articulated skeletons 3,5 4 4. Preparation of resin embedded specimens(**plant or animal**) 5. Demonstration of Taxidermy 6. Preparation of herbarium sheets

COURSE CONTENT

Content for Classroom transaction (Units)

7. Preparation of specimens by each student from a given phylum

8. Preparation of display boxes of dry plant and plant product mounts	
Teacher Specific Module	

Teaching	Classroom Procedure (Mode of transaction)		
and	Lecture, Group activities, group interaction, seminar, presentations, Field		
Learning	studies		
Approach	Note: Only a brief description of the focal topic is required. Teaching aids like		
	photographs, models, videos related to the topic may be used.		
	MODE OF ASSESSMENT		
	A. Continuous Comprehensive Assessment (CCA) Theory		
	Total=25 marks		
Assessment	Quiz/ Test Papers/ seminars		
Types	Practical Total 15 marks		
	Lab performance/ record/ field report, individual specimen preparation,		
	herbarium sheets		
	B. End Semester Examination		
	B. End Semester Examination		
	Theory Total 50 marks, Duration 1.5 hrs		
	Multiple Choice Questions -12x1 =12 marks		
	Short questions- 6 out of $8 \times 3 = 18$ marks		
	Short Essays 4 out of $6 \ge 5 = 20$ marks		
	Practicals Total 35 marks Duration- 2 hrs Record 10 marks,		
	Examination 25 marks: Preparation of Specimens 15 marks Viva-2 marks,		
	Herbarium sheets- 8 marks		
	TRUTH SLALL MINE TO THE		

References

- Bean, A.R., ed. (2006). Collecting and preserving plant specimens: a manual. Queensland Herbarium, Environmental Protection Agency Biodiversity Sciences unit, Brisbane, Australia. [ii], 28 p. Call No.: QK 61 .C64 2006
- 2. Bhaskaran, K.K. (1986). Micro technique and Histochemistry. Evershine Press, Vellangalloor.
- 3. Clute, W.N. (1903). The making of an herbarium. Charles D. Pendell, Publisher, Binghamton, NY. 23 p. Call No.: QK 61 .C58 1903
- 4. DeWolf, G.P., Jr. (1968). Notes on making an herbarium. Arnoldia, 28(8/9), 69-111. Call No.: QK 61 .D48 1968
- 5. Junqueira, L.C., & Carneiro, J. (2005). Basic Histology (11th ed.). Mc GrawHill.

Programme	BSc (Hono	urs) ZOOLOGY					
Course Name	ENVIRON	ENVIRONMENTAL BIOLOGY					
Type of Course	DSC A						
Course Code	UC2DSCZ	GY100					
Course Level	100						
Course	This comp	rehensive course covers the fundamental principles of					
Summary	ecosystems,	, populations, and communities, emphasizing biodiversity &					
	its threats.	It explores biogeochemical cycles, renewable and non-					
	renewable	resources, and ecological interactions. The module on					
	biodiversity	delves into its types, significance, and threats, including					
	climate cha	ange & habitat destruction. Conservation efforts, both					
	internationa	al & national, are detailed, along with key environmental					
	laws. It con	ncludes with a focus on managing environmental issues,					
	addressing	solid waste, watershed management, carbon-related					
	concepts, ar	nd eco-					
	friendly init	iatives.					
Semester	Π	Credits 4 Total Hours					
Course Details	Learning	Lecture Tutorial Practical Others					
	Approach	3 1 75					
Pre- requisites,							
if any							

CO	Expected Course Outcome	Learning	PO			
No.	TRUTH SHALL MARCE TOOL	Domains *	No			
1.	Explain the dynamics of Ecosystem	U	1,2,7			
2.	Describe the attributes of Population, community and animal interaction.	U	1,2,7			
3.	Distinguish concepts of biodiversity threats to biodiversity and measures to conserve Biodiversity.	А	1,2,6,7			
4.	Employ strategies to manage environmental issues.	An	1,2,6,7			
5.	Administer experiments in Environmental Biology.	An	2,6,10			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),					
Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs	CO No.
1		Dynamics of Ecosystem	10	
	1.1	Introduction to Environmental Biology; Scope and History.	1	1
	1.2	Basic concept and structure of ecosystem : Definition; Abiotic (Sunlight, temperature, soil, water, atmosphere) and Biotic components (Producers, consumers, decomposers)	2	1
	1.3	Functions of ecosystem : Productivity-Food chain- Food web- Energy flow-Laws of Thermodynamics	2	1
	1.4	Types of Ecosystem: Terrestria l (Forest-Grassland- Desert) and Aquatic -(Marine, Fresh water, Wetland); Biome; Ecological pyramids (number, biomass, energy)	3	1
	1.5	Biogeochemical cycles: Concept, gaseous (Carbon cycle, Nitrogen cycle) and sedimentary cycles (phosphorous cycle).	2	1
2		Population and Community	8	
	2.1	Concept of population : Population attributes- Population growth forms, Basic concepts of growth rates, density, natality, mortality, growth curves.	1	2
	2.2	Animal interactions: Positive- Commensalism- Mutualism-Proto-cooperation, Negative-Predation- Parasitism-Competition-Antibiosis.	3	2
	2.3	Characteristics of a community : Species diversity- richness, evenness, stratification, dominance, ecological indicators, Ecotone and Edge effect, Keystone species, Flagship species, Umbrella species. Concepts of Ecological Niche and Guild, Ecological succession, community evolution- climax.	4	2
3		Biodiversity Conservation and Disaster Management	27	
	3.1	Introduction to Biodiversity: Types of biodiversity- Alpha, Beta and Gamma diversity.	7	3

	Concept and importance of Biodiversity: Levels of Biodiversity- Species diversity, Genetic diversity, Microbial, Ecosystem diversity (in brief); Biodiversity indices (Shanon-Weiner index, Simpson's index); Basic sampling techniques (Quadrat and Transect methods). Significance of Biodiversity - Ecosystem productivity (Ecosystem services, Biological resources, Social benefits), Ecosystem stability; India as a mega-diversity nation, Biodiversity hotspots. Threats to Biodiversity: 1. Climate change and global warming (details of greenhouse effect and Ozone depletion to be included here), 2. Habitat destruction, 3.Pollution (air, water, noise and plastic pollution) - causes, effects and control measures in brief, Invasive species, Over-exploitation of natural resources.		
3.2	Conservation of Biodiversity Protected area concept: Wildlife Sanctuary, National Park, Biosphere Reserve, Conservation Reserve, Community Reserve	1	3
3.3	International Efforts in Biodiversity Conservation: WWF, Convention on Biological Diversity (CBD), International Union for the Conservation of Nature and Natural Resources (IUCN), United Nations Environment Program-World Conservation Monitoring Centre (UNEP-WCMC), Red Data Book, Green Data Book, Blue Data Book; IUCN's Post 2020 Global Biodiversity Framework (GBF) Strategy Initiative, UN's Sustainable Developmental Goal 15 of 2030 Agenda. Overview of G20 Summit 2023 in terms of Biodiversity Conservation and Sustainable development .	3	3
3.4	 National level initiatives National Biodiversity Strategy and Action Plan; People's Biodiversity Register. Regional level initiatives: The Chipko movement, Narmada Bachao Andolan, The Silent Valley Episode. 	4	3
3.5	Environmental disasters: Natural disasters (Earthquakes, Cyclones, Floods, Tsunamis and Landslides) and Man-made disasters-case studies (Global level- Chernobyl nuclear power plant explosion, National level - Bhopal gas tragedy and Regional level- Endosulfan issue). PRRP for disaster management.	5	4
3.6	Management of Environmental Issues	7	4

		Solid Waste Management; Watershed Management; Rainwater		
		Harvesting;		
		International agreements: Montreal Protocol, Kyoto		
		Protocol, Inter-government Panel on Climate Change (IPCC),		
		Overview of UN Climate Change Conferences (COP 2023 to		
		be included); Ramsar Convention.		
		Carbon Credit; Carbon Trading (Emission trading); Carbon		
		Sequestration; Carbon Footprint; Ecological Footprint		
		Environmental Laws (Brief accounts only): The Wildlife		
		Protection Act, 1972; The Water (Prevention and Control of		
		Pollution) Act, 1974; The Forest (Conservation) Act, 1980;		
		The Air (Prevention and Control of Pollution) Act, 1981; Indian		
		Forest Act (Revised) 1982; The Environment Protection Act,		
		1986; The Biodiversity Act, 2002; National Green Tribunal		
		Act, 2010; Environment (Protection) Amendment Rule, 2022.		
		Est. in 1921	• •	
4		Practicals	30	
	1.	Estimation of Dissolved Oxygen (Demonstration).	2	
-	2.	Estimation of Carbon-dioxide	2	
	3.	Plankton identification using permanent slides & comment on adaptations.	4	-
	4.	Identify the Animal Interactions using appropriate pictures/diagrams	4	-
	5	Spotters:Plankton counting chamber, Secchi disc & Plankton net	2	-
	6.	Visit to any polluted site and preparation of a detailed report (it should include observation and remedial measures). (Group Report)	10	5
	7.	Identify five influential personalities (from India) who have contributed towards the conservation of the environment and comment on their contributions (eg. Vandana Shiva,Sundarlal Bahuguna, ,Daya Bhai, Sugathakumari, M.K.Prasad, Prof.Sitaraman, Sankaranarayana, Kallen Pokkudan)	6	
5		Teacher Specific Module		

EVALUATION AND ASSESSMENT

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Lecturing, Field Visit to Ecologically significant areas
Approach	
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA):
	Theory Total = 25 Marks
	Quiz, Test Papers, Seminar
	Practical Total = 15 Marks
	Lab performance, record, field report
Assessment	B. End Semester Examination:
Types	Theory: Total =50 Marks, Duration 1.5 hrs
	Multiple Choice Questions $-12 \ge 12$ Marks
	Short questions-6 out of 8 x 3 =18 Marks Short Essays
	4 out of 6 x $5 = 20$ Marks
	Practical Total =35 Marks; Duration - 2 hrs
	Record - 10 Marks
	Examination - 25 Marks : Estimation of CO2 8 marks./O2 Estimation-
	Principle & Procedure only- 4 marks + any 2 planktons (4 marks),
	Spotter identification - 6 marks, Identify & comment on the Animal
	Interactions using photographs – 5 marks, Viva - 2 marks, Polluted site
	visit report- 4 marks.

REFERENCES

- 1. Asthana M. and Astana D.K.(1990), Environmental pollution and Toxicology Alkaprinters.
- 2. Beeby A, Brennan A.M. (2006), First Ecology, Ecological principles and Environmental issues International students edition Sec. edition Oxford UniversityPress.
- 3. Bharucha E. (2008), (UGC). Text Book of Environmental Studies of Undergraduate course.University Press.
- 4. Bhattacharya, K.S. Sharma. A. (2015), Comprehensive Environmental Studies Naiosa Publishing House Pvi.. Ltd., New Delhi, .
- 5. Gupta K.C, Bhamrah, H.S and G.S.Sandhu (2006) Research Techniques in Biological Sciences. Dominant Publishers and Distributors, New Delhi.
- 6. Landis, W. G. and Hing-hoYu,, (1995). Introduction to Environmental Toxicology: Impacts of chemicals upon Ecological systems: Baca Raton: Lewis Publishers
- 7. Misra S.P., Pandy S.N. (2009), Essential Environmental Students, Ane books Pvt. Ltd.
- Nachiketa, N. (2018), Environment and Ecology' A dynamic approach, (1" Ed.). Noida: GKP Publication.

- 9. Odum, E.P. (1971). Fundamentals of Ecology. W.B. Saunders College Publishing, Philadelphia
- 10. Palai A. K. (1999) National Human Rights Commission of India, Atlantic publishers
- 11. Paul R.C., 2000.Situations of Human Rights in India. Efficient offset printers.
- 12. Peter D. S. (2002). Ecology: Theories and applications. Prentice Hall of India pvt.Ltd.New Delhi.
- 13. Rajagopalan, R. (2005). Environmental Studies from Crisis to Cure. Oxford University Press,New Delhi.
- 14. Ricklefs R (2001). The Ecology of Nature. Fifth Edition. W.H. Freeman and Company.
- 15. Ruxton, G.D. and Colegrave, N. (2006), Experimental design for the life sciences. Oxford University Press
- 16. Sharma J.B (2009), Environmental studies' 3rd Ed. University science Press
- 17. Sharma P.D(2012), Ecology and Environment' 11th Ed. Rastogi Publications
- 18. Sharma P.D. (2005) Environmental biology and Toxicology, Rastogi publication
- 19. Singh R.B & Suresh Mishra Paulami Maiti (1996), Biodiversity Perception, Peril and Preservation' PHI Learning, Environmental Law in India: Issues and Responses
- 20. Smith, T. M. Smith R. L. (2015). Elements of Ecology. (9th Ed.), New Jersey: Pearson Education.
- 21. https://www.footprintcalculator.org/home/en

Programme	BSc (Honours) Bio	BSc (Honours) Biochemistry					
Course Name	ESSENTIALS OF	BIOCHEM	IISTRY: V	/ITAMINS,	HORMONI	ES,	
	ENZYMES AND	NEUROTR	ANSMIT	TERS			
Type of Course	DSC A						
Course Code	UC2DSCBCH100						
Course Level	100-199						
	This comprehensiv	e course de	elves into t	the fundamen	ntal biocher	nical aspects	
Course	of vitamins, hormo	ones, enzym	nes, and ne	urotransmitte	ers, explorir	ng their roles	
Summary	in maintaining ph	ysiological	balance	and support	ing essenti	al cellular	
	functions.						
Semester	Π	Cree	dits		4	Total	
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours	
	Approach	3	0	1	0	75	
Pre-requisites, if	Nil						
any							

CO	Expected Course Outcome	Learning	PO No
No.		Domains *	
1	Discuss the fundamentals of vitamins	K,U	1,2,3,4
2	Describe the general features of hormones and their receptors.	U, E	2,3,4
3	Describe the classification, functions, mechanism of action and deficiency disorders of hormones	U, E, A	1,2,3,4
4	Evaluate neurotransmitter and its mechanism of action	A, E	1,2,3,4
5	Analyse the mechanism of enzyme catalysis, kinetics and specificity	U, An, E	1,2,3,4
6	Demonstrate proficiency in enzyme and vitamin extraction and quantification from various sources	U, A, S, Ap	1,2,3,4 ,10
7	Demonstrate the mechanism of action of hormones/neurotransmitters through presentations	A,S,C, I	2,3,4,6 ,10
	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), est (I) and Appreciation (Ap)	Create (C),Ski	ll (S),

Module	Units	Course description	Hrs	CO No.
1. Vitamins	1.1	Vitamins- General introduction	3	1
	1.2	Classification and nomenclature of vitamins	4	1
	1.3	Fat soluble vitamins (types, biochemical and physiological functions, deficiency diseases) Vitamins as Coenzymes	3	1
	1.4	Water soluble vitamins (types, biochemical and physiological functions, deficiency diseases)	5	1
	2.1	History of endocrinology	1	2
	2.2	Concept on target gland, negative and positive feedback, characteristics and transport of hormones	3	2
	2.3	Hormone receptors and its classification	3	2
2. Hormones & Neurotrans	2.4	Outline study of hypothalamic, pituitary, thyroid, parathyroid, adrenal, pancreatic and gastro intestinal hormones (types of hormones, physiological and biochemical role, deficiency diseases)	3	3
mitters	2.5	Mechanism of action of peptide and steroid hormones	3	3
	2.6	Neurotransmitters-definition, classification, types of receptors, role in synaptic transmission	3	4
	2.7	Molecular mechanisms of action - Acetylcholine, biogenic amines, catecholamines, serotonin, amino acids. Neuroactive peptides as transmitters.	4	4
	3.1	Classification of enzymes- six major classes of enzymes with one example each.	2	5
	3.2	Cofactors and coenzymes	1	5
3. Enzymes	3.3	Elementary study of the factors affecting velocity of enzyme catalysed reactions- effect of substrate concentration, enzyme concentration, temperature and pH	2	5
	3.4	Michaelis- Menten equation (without derivation). Km and its significance, Lineweaver Burk plot.	2	5
	3.5	Enzyme specificity- an example each for group specificity, optical specificity, geometrical specificity and cofactor specificity of enzymes.	3	5
4.	4.1	Extraction and assay of enzymes - Acid phosphatase from	5	6
Practical		Fresh Potato (Solanum tuberosum)		

	4.2	Extraction and assay of enzymes - β - amylase from sweet potato (<i>Ipomoea batatas</i>)	5	6
	4.3	Extraction and assay of enzymes -Catalase from bovine /porcine liver	5	6
	4.4	Extraction and assay of enzymes -Urease from Jackbean (<i>Canavalia ensiformis</i>)	5	6
	4.5	Estimation of ascorbic acid from lemon guice	5	6
	4.6	Demonstration of the mechanism of action of	5	7
		hormones/neurotransmitters through posters, models,		
		and digital presentations		
5.Teacher s	pecific co	ontent/ Teacher facilitated activities		
Teaching and	Clas	sroom Procedure (Mode of transaction)		
Learning		course content will be transacted through seminars, pow	er poi	nt
Approach		entations, Group activity, Interactive sessions and Laboratory s	-	
Assessment	MO	DE OF ASSESSMENT		
Types		A. Continuous Comprehensive Assessment (CCA)		
		Theory 25marks t in 1921		
	1.	Poster making/model building (2 marks)		
	2.	Seminar presentation/Quiz (5 marks)		
	3.	Involvement in group discussion (3 marks)		
	4.	Multiple Choice questions (10 marks)		
	5.	Assignment (2 marks)		
	6.	Open book test (3 marks)		
		Practical 15 marks*		
	1.	Viva (5 marks)		
	2.	Record (5 marks)		
	3.	Laboratory involvement (5 marks)		
		*This mark to be converted to 7.5 marks		
		B. End Semester Examination (ESE)		
	W	ritten examination for one and a half hours (50 marks)		
	Pr	cactical examination (35 marks)*		
	*]	This mark to be converted to 17.5 marks		

References

- Botham K, McGuinness O., Weil P.A., Kennelly P., Rodwell V. (2022) Harper's Illustrated Biochemistry (32nd ed.) Mc Graw Hill Education
- Kandel E., Schwartz J, Jessell T., Siegelbaum S., HudspethA. (2013) Principles of Neuroscience (5th ed.) Mc Graw Hill Education
- Nelson D. L., Cox M. M. (2021) Lehninger Principles of Biochemistry, (8th ed.) W.H. Freeman &. Co Ltd.
- Berg J.M., Gatto G.J., Hines J, Tymoczko J.L., Stryer L. (2023) Biochemistry (10th ed.) W.H. Freeman &. Co Ltd.
- 5. West E.S., Todd W.R., Mason H.S., Van Bruggen J.T., (2017) Text Book of Biochemistry (4th ed.)
- 6. Voet D., Voet J., Pratt C.W., (2018) Voet's Principles of Biochemistry (5th ed.)
- 7. Experimental Biochemistry: A Student Companion, Beedu Sasidhar Rao & Vijay Deshpande (ed), I.K International Pvt. LTD, New Delhi
- 8. Introductory Practical biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi
- 9. Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana ESt. in 1921

Suggested Readings

- 1. Banerjee P.K. (2020) Introduction to Biophysics (Revised Edition) AB Book.
- 2. Das D. (2015) Biochemistry (14th ed.) Academic publishers

Programme							
Course Name	BIOLOGICAL FOUNDATIONS FOR HEALTH AND WELLNESS						
Type of	MDC						
Course							
Course Code	UC2MDCBTS100						
Course	100						
Level							
Course	Introductory level course	for understa	unding the b	asic multi-f	faceted concer	ots in	
Summary	biology and its relevance	in promotin	g human he	ealth and the	e overall wellt	being	
	and quality of life.						
Semester	II	Cree	dits		3		
						Total	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Details							
		2	0	1	Case Studies	60	
					Group work		
Pre-requisites, if	None	. in 19	001		•		
any	ESI		7 ∠ 1				

CO		Learning	PO
No.	Expected Course Outcome	Domains*	No
1	Understand the fundamental principles of biology and how they	U, K	2,3,10
	relate to human health and wellness.		
2	Learning the structure and function of the human body systems and	K	2,3,10
	their role in maintaining human health and wellness.		
3	Explore the role of genetics, molecular expression and	U,E	2,3,10
	advancements in the field of biology in determining individual		
	health outcomes including genetic testing, personalized medicine.		
4	Analyse the molecules of life, nutrition and lifestyle choices and its	U, An	2,3,10
	relation with preventable diseases.		
5	Explore the relationship between biology and mental health,	U, An	2,3,10
	including the role of neurotransmitters and hormones in health and		
	well-being.		
×	Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E),	Create(C),	1
	Skill(S), Interest(I) and Appreciation(Ap)		

Module	Units	Course description	Hrs	CONo.
Withduite	Units		30	CONU.
	1.1	Biomolecules in the cell and their functions. Hierarchical	5	1
	1.0	organization in living systems.		1
	1.2	Role of Biology in health and wellness. Exploring wellness	3	1
1		and its dimensions. Relationship between biology and		
		wellness		
	1.3	Role of nutrition in maintaining wellness. Relationship	3	1,4
		between diet and chronic diseases		
	1.4	Genetics and wellness.	5	1,3
		Basic concepts of reproduction. Genes as the basis of		
		heredity. Central dogma of molecular biology and		
		genetic code		
	2.1	Understanding the basic level structure and function of major		
		body systems	4	2
		Circulatory system, respiratory system, digestive System		
2	2.2	Muscular and skeletal system, excretory system and	4	2
		reproductive system		
	2.3	Nervous system, immune system and endocrine system.		
		Understanding the different regions and structures of the	6	2,5
		brain as a part of nervous system. Neuro endocrine signaling		
		mechanisms. Biological basis of mental health disorders		
		PRACTICALS	30	
	3.1	1. Systematic analysis of biomolecules using qualitative		
		assays.		
		2. Estimation of protein using Biuret method.	15	1,2
		3. Separation of components of a given mixture of		
		amino acids using paper chromatography		
	3.2	4. Study of different stages of mitosis in onion root tip	5	1,3
3		(temporary preparation)		
		5. Case study on lifestyle disorders; importance of early	5	1, 3,4
		detection and regular screening of common diseases		
	3.3	6. Analysing popular diet patterns in Kerala		
	3.4	Practical Classes on Relaxation	5	2,5
		Techniques		
		. Yoga		
		. Cardio training & exercise		
		3. Meditation		
		4. Mindfulness		
		(Hands on Training and Teaching Sessions)		
4		Teacher Specific Module		
		L		

COURSE CONTENT

Content for Classroom transaction (Units)

	Classroom Procedure (Mode of transaction)				
Teaching and	Lectures, group interactions, group seminar, power point presentations, case				
Learning	studies				
Approach	Teaching aids used- Audio Visual Presentation, Photographs, Internet Resources				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA)				
	Theory Total = 15 marks				
Assessment	Test Papers/Assignments/Seminars				
Types	Practical Total= 15 marks				
	Timely submission of Records				
	Chart/Visual presentations				
	Diet assessment study				
	B. End Semester examination				
	Theory Total = 35 marks (Duration 1hr)				
	Multiple Choice Questions $(5 \times 1) = 5$ marks				
	Short Questions (5 out of 7) X $2=10$ marks				
	Short essays (5 out of 7) X $4=20$ marks				
	Practical Total =35 marks (Duration 2hrs)				
	Record = 10 marks				
	Viva= 5 marks				
	Case Study Report=5 marks				
	Practical case study= 15 marks				
	TH SUALI MING				

References

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th ed.). Garland Science.
- 2. Berg, J. M., Tymoczko, J. L., &Gatto, G. J. (2018). Biochemistry (9th ed.). W.H. Freeman and Company.
- 3. Campbell, N. A., & Reece, J. B. (2019). Biology. Pearson.
- 4. Griffiths, A. J. F., Miller, J. H., Suzuki, D. T., Lewontin, R. C., &Gelbart, W. M. (2020). An Introduction to Genetic Analysis (12th ed.). W.H. Freeman and Company.
- 5. Guyton, A. C., & Hall, J. E. (2015). Textbook of Medical Physiology (13th ed.). Philadelphia, PA: Elsevier.
- 6. Johnson, G. B., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology. McGraw-Hill Education.
- 7. Klug, W. S., Cummings, M. R., Spencer, C. A., &Palladino, M. A. (2018). Concepts of Genetics (12th ed.). Pearson.
- 8. Mader, S. S., & Windelspecht, M. (2020). Essentials of Biology. McGraw-Hill Education.
- 9. Mary Larkin (2013) Health and Well-Being Across the Life Course; Sage Publications

- Nelson, D. L., Cox, M. M. (2017). Lehninger Principles of Biochemistry (7th ed.). W. H. Freeman.
- Nestler, E. J., Hyman, S. E., & Malenka, R. C. (2009). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). McGraw-Hill Medical.
- 12. Smith, C. M., Marks, D. B., & Lieberman, M. A. (2017). Marks' Basic Medical Biochemistry: A Clinical Approach (5th ed.). Wolters Kluwer.
- 13. Tortora, G. J., &Derrickson, B. H. (2017). Principles of Anatomy and Physiology (15th ed.). Hoboken, NJ: Wiley.
- 14. Nutt, D. J., Malizia, A. L., & Zohar, J. (2008). Current perspectives on the neurobiology of anxiety and its treatment. Human Psychopharmacology: Clinical and Experimental, 23(6), 363-374.

SUGGESTED READINGS

- 1. Anderson, C. M., & Miller, E. F. (2019). The microbiome and its implications for human health. Current Biology, 29(16), R719-R722.
- 2. Brown, K. L., & Davis, R. M. (2021). The impact of nutrition on immune function: A comprehensive review. Nutrition Reviews, 79(2), 144-165.
- 3. Clark, A. J., & Patel, N. B. (2019). The influence of genetics on disease susceptibility. Current Opinion in Immunology, 60, 98-102.
- 4. Hall, M. E., &Loprinzi, P. D. (2020). Physical activity and cardiovascular health: An update. American Journal of Lifestyle Medicine, 14(6), 580-586.
- 5. Johnson, L. M., & Thompson, R. W. (2020). The effects of stress on mental health and well-being. Journal of Health Psychology, 25(8), 1052-1065.
- 6. Roberts, S. G., & Williams, M. A. (2019). Understanding the genetics of obesity: From genes to pathways. Clinical Genetics, 95(1), 6-14.
- 7. Smith, J. D., & Johnson, A. B. (2020). The role of exercise in promoting cardiovascular health. Journal of Applied Physiology, 125(3), 456-468.
- 8. Taylor, R. W., & Williams, S. M. (2019). Dietary strategies for weight management. Nature Reviews Endocrinology, 15(5), 273-277.
- 9. Thompson, H. E., & Jones, C. M. (2020). The role of exercise in preventing chronic diseases. Current Opinion in Cardiology, 35(5), 543-549.
- 10. Wilson, A. B., & Davis, M. C. (2021). Sleep and its impact on physical and mental health. Sleep Medicine Reviews, 57, 101435.

Programme	BSc (Honours) Biologi	BSc (Honours) Biological Sciences				
Course Name	ESSENTIALS IN BIOL	OGICAL T	ECHNIQU	ES		
Type of	DSC A					
Course						
Course Code	UC3DSCBTS200					
Course	200					
Level						
Course	Essentials in Biologica	l Technique	s is a comp	rehensive an	d interdisci	plinary
Summary	course that covers a b	road range	of bioanal	ytical technic	ques applic	able to
	various scientific discip	plines. It beg	gins with a	review of ba	asic bio ana	alytical
	technique and an intro	oduction to	general			
	terminologies. This con	urse contain	s widely er	nployed tech	niques alon	g with
	their theory, working p	rinciple, its	possible ap	oplications.		
Semester	III	Ci	redits		4	Total
Course	Learning Approach	Learning Approach Lecture Tutorial Practical Others Hours				
Details	$F \le t i r^3 1 9 2 1^0 1 75$					
Pre-requisites,	Student with basic know	Student with basic knowledge of biology.				
if any	1 Alexandre					

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Students are able to deal with different tools and techniques used in biological research.	К	2,3,9,10
2	Applications of various bioanalytical instruments in biological research	U,A,An	2,3,9,10
3	Helps to understand the principles and working mechanisms of different instruments.	U,A	2,3,9,10
4	Understand the basic concepts of microbiological techniques including staining and sterilization	U, A,An,S	2,3,9,10
5	Learn the working of various instruments used in microbiology.	U,A,S	2,3,9,10
6	Highlighting the diverse roles that radioisotopes play in medical diagnosis and treatment.	U,I	2,3,9,10
	ember(K), Understand(U), Apply(A), Analyse (An), Evaluate(E), S), Interest (I) and Appreciation (Ap)	Create(C),	

Module	Units	Course description	Hrs 45	CO No.
		Introduction to Basic Bioanalytical Techniques. Analytical techniques: Colorimetry, pH meter, Spectrophotometry	15	
	1.1	Definition and scope of bioanalysis	2	1
	1.2	Importance and applications of bioanalytical techniques in various fields of biological science. (biological research, medical diagnostics, and therapeutic interventions)	3	1
1	1.3	General principles and applications of Colorimeter, Beer- Lamberts Law, Derivation, Parts & working of a Single Cell Colorimeter, & Double Cell Colorimeter.	3	2
	1.4	Principles, working and applications of pH meter Measurement of pH: Indicators, pH meter, Different Types of Electrodes, advantages and disadvantages of different Electrodes, Factors affecting pH determination	4	2
	1.5	Principle involved in Spectrophotometer.Applications of UV-Visible spectroscopy in bioanalysis MeritsandDemeritsof:ColorimeterSpectrophotometer	3	2
		Separation techniques: Centrifuge, chromatography, electrophoresis	12	
	2.1	Centrifugation: Principles, types of centrifuges, application	3	2, 3
2	2.2	Principle and technique of chromatographic separations, brief over view about the types of chromatographic techniques (Thin layer, Ion-exchange, Size exclusion chromatography)	5	2,3
	2.3	Principles of electrophoresis, Gel electrophoresis (SDS- PAGE, agarose gel electrophoresis).	4	2,3
		Radiolabeling techniques	18	
3	3.1	Methods of detection and measurement of different types of radioisotopes used in biology, incorporation of radioisotopes in biological tissues and cells. Autoradiography, Liquid Scintillation Counting, Geiger-	8	6
	3.2	Muller Counting.Radioisotopes and their biological applications.Medical Imaging: Technetium-99m (Tc-99m):Radiation Therapy: Iodine-131 (I-131).Tracer Studies in Biology: Carbon-14 (C-14): Carbon	10	6

		dating.		
		DNA and Protein Labeling: Phosphorus-32 (P-32) and		
		Sulfur-35 (S-35).		
		Blood Flow Studies: Technetium-99m (Tc-99m).		
		Radioimmunoassays (RIA): Iodine-125 (I-125) and		
		Iodine-131 (I-131).		
		Bone Imaging: Technetium-99m (Tc-99m) and		
		Strontium-85 (Sr-85).		
		Practical	30	СО
	4.1	Perform paper chromatography of amino acids.	4	5
	4.2	Colorimetric estimation of Ascorbic acid	4	5
	4.3	Spectrophotometric Quantification of DNA.	8	5
	4.4	SDS-PAGE, agarose gel electrophoresis.	8	5
4	4.5	Problems in radiology [on half cycle, quantity, disposal]	6	6
	5	Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)			
and	Lecture, group interaction, seminar, presentations			
Learning	Note: Only a brief description of the focal topic is required.			
Approach	Teaching aids like photographs, models, videos related to the topic may be used			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA) Theory			
Assessment	Total=25 marks			
Types	Quiz/ Test Papers/ seminars/ Assignments			
	Practical Total 15 marks			
	Lab performance/ record			
	B. Semester End examination			
	Theory Total 50 marks, Duration 1.5 hrs			
	Fill in the blanks $-10 \ge 10$ marks			
	Short questions- $(10 \text{ out of } 12) \ge 20 \text{ marks}$			
	Short Essays (5 out of 7) x $4 = 20$ marks			
	Practicals Total 35 marks Duration- 2 hrs Record 10 marks,			
	Examination 25 marks: Performance of various experiments 12marks, Problems in radiology- 8 marks, Viva-5 marks			

References

- 1. Bajpai, P.K. 2006. Biological Instrumentation and methodology. S. Chand & Co. Ltd.
- 2. Benjamin/Cummings Publishing Co
- 3. Bhaskaran, K.K (1986) Microtechnique and Histochemistry. Evershine Press, Vellangalloor
- 4. Cappuccino, J.G., and Sherman N. Microbiology A Laboratory Manual3rd Ed. The
- 5. Campbell D., Biological spectroscopy (1984) Benjamin/Cummings Pub. Co, Menlo Park, Calif, Biophysical techniques series.
- 6. Dubey, R.C. and Maheshwari, D. K (2002) Practical Microbiology S.Chand & Company Ltd.
- 7. Junqueira, L.C., and Carneiro, J (2005)Basic Histology11th Ed. Mc GrawHill
- 8. Wilson K., J. M. Walker, Eds., Principles and techniques of biochemistry and molecular biology (Cambridge University Press, Cambridge (2009) UK: New York, 7th ed..
- 9. Talaro, K.P., and Talaro, A (2002) Foundations in Microbiology4th Ed. McGraw Hill.

SUGGESTED READINGS

- Boyer, R. F. (2012). Biochemistry laboratory: modern theory and techniques (2nd ed.). Prentice Hall.
- 2. Katoch, R. (2011). Analytical techniques in biochemistry and molecular biology. Springer.
- 3. Spector, D. L., & Goldman, R. D. (Eds.). (2006). Basic methods in microscopy: protocols and concepts from cells: a laboratory manual. Cold Spring Harbor Laboratory Press.
- 4. Switzer, R. L. (1999). Experimental biochemistry (3rd ed.). W. H. Freeman and Co.
- 5. Boyer, R. F. (2000). Modern experimental biochemistry (3rd ed.). Benjamin Cummings.
- 6. Williams, D. B., & Carter, C. B. (2009). Transmission electron microscopy: a textbook for materials science. Springer. http://dx.doi.org/10.1007/978-0-387-76501-3
- 7. Silverstein, R. M. (2005). Spectrometric identification of organic compounds (7th ed.). John Wiley & Sons.
- 8. Harvey, D. (2000). Modern analytical chemistry. McGraw-Hill.

Programme	BSc (Honours) Biolo	gical Scien	ces				
Course Name	GENERAL MICROB	GENERAL MICROBIOLOGY					
Type of	DSC A						
Course							
Course Code	UC3DSCBTS201						
Course	200						
Level							
Course	The course provides	an overvie	w of the fur	damental c	oncepts and	principles of	
Summary	Microbiology. It covers various aspects of microorganisms, including their structure, function, genetics, classification, and diversity. The course also delves into the study of microbial growth and metabolism and the ways to control their growth by physical and chemical means. Additionally, it develops a good understanding of the importance and scale of the antimicrobial resistance crisis.						
Semester	III	Cr	edits		4		
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours	
Details		Es ³ i	$n^{0}1021$	1	0	75	
Pre-	_	LSU. I	1 1721				
requisites, if		E I	allin.	1			
any		16	1998	/			

СО		Learning	PO			
No.	Expected Course Outcome	Domains*	No			
1	Develop a good understanding of the microbial world	U	2,3,10			
2	Exposure in bacterial cultivation and identification	S	2,3,10			
3	Understand the microbial growth and the ways to control their growth	U	2,3,10			
4	Understand the role Antibiotics and Antimicrobial resistance	U,A	2,3,10			
5	Create basic knowledge about microbial metabolism, microbial genetics and gene transfer.	U,A,S	2,3,10			
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),					
	Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs	CO
			45	No.
		The world of microbes	15	
	1.1	History and scope of Microbiology	2	1
1	1.2	Microbial taxonomy & Identification	2	1,2
1	1.3	Microscopy & staining techniques	3	1,2
	1.4	Ultrastructure of bacteria	3	1
	1.5	Ultrastructure of yeast and economic importance of Fungi	3	1
	1.6	Viruses : General properties, Phages and its significance	2	1
	2.	Microbial growth and metabolism	12	
	2.1	Bacterial growth curve, continuous culture	3	2,3
2	2.2	Factors affecting microbial growth-environmental and nutritional factors	2	3
	2.3	Bacterial nutrition, nutritional types of bacteria	2	3
	2.4	Culture media and cultivation techniques	2	2,3
	2.5	Transport and storage of microbes	1	3
	2.6	Microbial metabolism	2	3,5
	3	Antimicrobial agents and Microbial Genetics	18	
3	3.1	Sterilization and disinfection : Conditions influencing the effectiveness of antimicrobial agent activity	2	3,4
	3.2	Physical agents of sterilization	2	3,4
	3.3	Chemical agents of sterilization	2	3,4
	3.4	Testing of disinfectants	1	3,4
	3.5	Antibiotics –mode of action	2	3,4
	3.6	Drug resistance in bacteria	2	3,4
	3.7	Methods of testing antimicrobial susceptibility	1	3,4
	3.8	Genetic materials in bacteria.	4	5
		Bacterial chromosome. Extrachromosomal genetic elements: Plasmid, Transposons.		

COURSE CONTENT

Content for Classroom transaction (Units)

	3.9	Mechanism of gene transfer & transformation,	2	5
		transduction and conjugation.		
		PRACTICALS	30	
	4.1	Microscopy and Instruments	4	2
		WHO Safety guidelines and laboratory protocols		
		Study of simple and compound light microscopes		
		Instruments –Autoclave, Hot air oven, Bacteriological		
4		incubator, Laminar air flow chamber		
	4.2	Preparation of solid and liquid media for microbial	8	2
		cultures		
		Solid media (1) Nutrient agar		
		(2) Mac Conkey's agar		
		Liquid Media (1) Nutrient broth		
		(2) Peptone water		
	4.3	Culture methods	6	2
		Streak plate technique and isolation of pure colonies.		
		Lawn culture and Liquid culture		
		Pour plate and spread plate techniques.		
	4.4	Staining techniques	6	2
		Simple staining, Grams staining		
		Staining of Yeast cell		
		Negative staining		
		Fungal staining- Lactophenol cotton blue staining		
	4.5	Examination of microbes in living condition	4	2
		Hanging drop method for demonstrating motility of		
		bacteria Annual Marce Contraction		
	4.6	Antibiotic sensitivity test	2	2
		Disc Diffusion method		
5		Teacher specific Module		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	
Approach	 Classroom lectures
	Video presentations
	Article and general reviews
	Seminars & group discussions
	Group assignments & presentations
	Hands on training

	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory Total=25 marks
Assessment	Quiz/ Test Papers/ seminars/viva
Types	Practical Total 15 marks
	Lab performance/ record/viva
	B. End Semester Examination
	Theory Total 50 marks, Duration 1.5 hrs
	Fill in the blanks or one word questions -10 x 1=10 marks
	Short questions-(10 out of 12) $x^2 = 20$ marks
	Short Essays (5 out of 7) x $4 = 20$ marks
	Practicals Total 35 marks Duration- 2 hrs
	Record 10 marks,
	Examination 25 marks: Performance of any 3
	lab experiments-15 marks, spotter identification - 5
	marks Viva-5marks

References

1. Ananthanarayanan, R& Panicker, C (2007).Textbook of Microbiology. Orient Longman.

Est. in 1921

- 2. Brown, T.A, Chapman and Hall. Gene cloning: An Introduction. Wiley Blackwell.
- 3. Bryan, E. Antimicrobial Drug Resistance. Academic Press, Inc.
- 4. Chan, P& Kreig. (2001). Microbiology concepts and applications. McGraw Hill Education.
- 5. Collee, J. Mackie and McCartney Practical Microbiology. Elsevier.
- 6. Kreig, N.R. & Wilkins. Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Balimore.
- 7. Kucera, S. Fundamentals of Medical Virology. Lea & Febiger.
- 8. Russel, D. (2013). Principles and Practice of Disinfection Preservation and sterilization. Wiley Blackwell.
- 9. Willey, J. (2019). Prescott's Microbiology. McGraw Hill Education.

Programme	BSc (Honours) Biological Sciences							
Course Name	CLINICAL BIOCHEMIS	CLINICAL BIOCHEMISTRY AND CLINICAL MICROBIOLOGY						
Type of Course	DSE	DSE						
Course Code	UC3DSEBTS200	JC3DSEBTS200						
Course Level	200							
Course	Clinical Biochemistry	and Clinic	al Microbi	ology is a	comprehens	ive and		
Summary	interdisciplinary course t	hat inspire	the students	s in learning	the frontier	areas of		
	biological sciences The	topics on l	oiochemical	analysis, cli	nical diagn	osis and		
	treatment of diseases of	creates an	awareness	among stuc	lents and	helps in		
	developing the technical a	and critical	thinking ski	lls to evaluate	clinical spe	cimens.		
Semester	III	Cre	edits		4	Total		
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours		
Details		4 0 0 60						
Pre-requisites,		1		1	1	1		
if any	_		0.01					
	Est. in 1921							

CO No.	Expected Course Outcome	Learning Domains*	PO No			
1	Helps to inspire students in learning the frontier areas of	К	2			
	biological sciences.					
2	Students will be exposed to fundamentals in Clinical	U, A, An	2,3,9,10			
	Chemistry and Clinical Microbiology.					
3	Students will be able to learn the functions and clinical	U,A	2,3,10			
	assessment of various organs of human body					
4	Helps to make them aware of the pathogens, health related	U	2,3,9,10			
	problems, their origin and treatment.					
5	Students will be able to understand the symptoms, causative	U,A	2,3,9,10			
	agents, clinical features, laboratory diagnosis of important					
	Medically important microorganisms					
	*Remember(K), Understand(U), Apply(A), Analyse (An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)					

Module	Units	Content for Classroom transaction (Units)	Hrs	CO
Mouule	Units	Course description	60	No.
		Lifestule diseases		110.
1	1 1	Lifestyle diseases	15	1
1	1.1	An overview of AIDS, Diabetes Mellitus, Obesity, Cancer,	15	1
		Cardiovascular diseases, kidney disorders, liver disorders.	• •	
		Functions of various organs and their clinical	20	
		assessment		
		Brief treatment only but emphasizing the biochemical aspect):		
2	2.1	e.g., liver, kidney, heart, pancreas endocrine glands, lung, brain.	12	2,3
	2.2	Biochemical changes in the organs under pathological	8	
		conditions		2,3
3		Biochemical Tests	10	
	3.1	Routine biochemical tests of blood sugar, cholesterol and NPN	10	
		Microorganisms of medical importance	15	
		Symptoms, causative agents, clinical features, laboratory		
	4.1	diagnosis and treatment of important	4	6
		Bacterial diseases- Diphtheria, Pneumonia, Cholera,		
		Tuberculosis, Salmonellosis, Typhoid		
		Symptoms, causative agents, clinical features, laboratory		
	4.2	diagnosis and treatment of important	4	
4		Viral diseases - Common cold, Respiratory Syncytial		
		virus infections, Corona virus (SARS).		
		Symptoms, causative agents, clinical features, laboratory		
	4.3	diagnosis and treatment of important Fungal diseases - Oral	3	4
		thrush, Aspergillosis	_	
		Symptoms, causative agents, clinical features, laboratory		
		diagnosis and treatment of important Parasitic diseases -		
	4.4	Symptoms, causative agents, clinical features, laboratory	4	4,5
		diagnosis and treatment of Malaria, Filariasis, Amoebiasis,		.,
5		Teacher Specific Module		
Teaching	z &	Classroom Procedure (Mode of transaction)	<u> </u>	
Learning		ICT Enabled Learning, Experiential learning, Tutorial, Lecturing,		
Approac				
Assessme		MODE OF ASSESSMENT		
Types		A. Continuous Comprehensive Assessment (CCA)		
		Theory Total=30marks		
		Quiz/Test Papers/Seminar/Activity Report		

B. End Semester examination

Theory Total 70 marks, Duration 2 hrs

Fill in the blanks $-10 \times 1 = 10$ Marks

Short questions- $(10 \text{ out of } 12) \times 3 = 30 \text{ Marks},$

Short Essays (6 out of 8) x 5 = 30 Marks

References

- 1. Ananthanaryanan R. and C.K.J. Panicker (2009) Text book of Microbiology, 9th edition, University Press (India) Pvt. Ltd. Publisher
- 2. Elmer W. Koneman (2006) Color Atlas & Textbook of Diagnostic Microbiology 5th edition, Lippincott Publication
- 3. Cheesbrough, M. (1998) District Laboratory Practice in Tropical Countries Part 1. Cambridge Low Price Edition. Cambridge University Press
- 4. Cheesbrough, M. (1998) District Laboratory Practice in Tropical Countries Part 2. Cambridge Low Price Edition. Cambridge University Press
- 5. Mukherjee, K.L. (ed,) (1988) Medical Laboratory Technology Vol. 1. TataMcGraw Hill
- 6. Mukherjee, K.L. (ed,)(1988) Medical Laboratory Technology Vol. 2. TataMcGraw Hill
- 7. Mukherjee, K.L. (ed,)(1988) Medical Laboratory Technology Vol. 3. TataMcGraw Hill.
- 8. Philip A. Thomas (2007) Clinical Microbiology, Orient Longman Pvt. Ltd.
- 9. Talaro, K.P., and Talaro, A. (2002). Foundations in Microbiology4th ed. McGraw Hill.

SUGGESTED READINGS

- 1. Boyer, R. F. (2000). Modern experimental biochemistry (3rd ed.). Benjamin Cummings.
- Boyer, R. F. (2012). Biochemistry laboratory: modern theory and techniques (2nd ed.). Prentice Hall.
- 3. Harvey, D. (2000). Modern analytical chemistry. McGraw-Hill.
- 4. Katoch, R. (2011). Analytical techniques in biochemistry and molecular biology. Springer.
- 5. Switzer, R. L. (1999). Experimental biochemistry (3rd ed.). W. H. Freeman and Co

Programme	BSc (Honours) Biological Sciences					
Course Name	AQUARIUM MANAGI	EMENT				
Type of	DSE					
Course						
Course Code	JC3DSEBTS201					
Course Level	200					
Course	Course provides knowledge on diversity of ornamental fish and plants, history and					
Summary	development of aquariu	ım keeping	and ornam	ental fish c	ulture, princi	ples of setting
	up and management o commercial farming te ornamental fishes, feed quarantine and disease	chniques, ding and n	seed produ utrition of	iction, pack	ing and tran	sportation of
Semester	III		Credit	S	4	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Total
Details		4		0		Hours
		4		0		60
Pre-		Est. ir	1921			
requisites,			1	1		
if any		E C	-28/85s			

CO		Learning	
No.	Expected Course Outcome	Domains	PO No
		*	
1	Introduce the nature and scope of aquarium management and	U	2,3,10
	ornamental fish culture		
2	Impart practical skills to students on aquarium management and	S	2,3,10
	ornamental fish culture		
3	Impart knowledge on self-employment opportunities in	R	2,3,7,10
	ornamental fish culture and Aquarium management.		
*Rem	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Cro	eate (C), Skill	(S),
Intere	st (I) and Appreciation (Ap)		

Module	Units	Course description	Hrs. 45	CO No.
	1.1	Diversity of ornamental fish.		
		Contribution of marine and freshwater fishes. Major	5	1
		ornamental fish species of India.		
		Ornamental plants. Ornamental invertebrates.		

1	1.2	History of aquarium fish keeping. Etiology of aquarium. Biotope aquarium. Vivarium, Insectarium, terrarium, paludarium, oceanarium, dolphinarium. Reef aquarium. Nano Aquariums. Role of public aquaria. Aquarium keeping as a hobby.	5	1,2
2	2.1	Principles of setting up and maintenance of aquaria: Construction of aquarium. Aquarium Accessories- aerators, filters, skimmers, chillers, lighting, decorates, etc. Latest trends in Aquarium tanks.	10	3
	2.2	Reproductive biology. Sex determination in ornamental fish. Breeding and seed production of Common ornamental fishes: Construction of breeding tanks. Larval rearing.	10	3
	3.1	Commercial farming technologies. Indigenous ornamental fishes and their culture, propagation and trade. Ornamental aquatic plants: Propagation methods, nutrient and environmental requirement, cropping methods, packing and transport St. 1921	10	3
3	3.2	Feeding and nutrition of ornamental fishes. Nutritional requirements of aquarium fish. Larval Feeding. Live feed culture. Artemia culture, infusoria, brachionus culture, Formulated feeds. Preparation of aquarium fish food.Common diseases and parasites of freshwater and marine ornamental fish. Health management of aquarium fishes	10	2,3
	3.3	 Field Trips and Workshops Visits to public aquariums, fish farms, and aquatic research centers. Hands-on workshops in advanced aquascaping and breeding techniques. Guest lectures from industry professionals and researchers. 	10	2,3
4		Teacher specific module		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Classroom lectures, Direct Instruction: Brain storming lecture, Explicit
Approach	Teaching, E-learning, interactive Instruction, Active co-operative learning,
	Seminar, Group Assignments Authentic learning, Library work and Group
	discussion, Presentation by individual student/ Group representative
Assessment	MODE OF ASSESSMENT
Types	A. Continuous Comprehensive Assessment (CCA) Theory Total=30
	marks
	Quiz/ Test Papers/ seminars
	B. End Semester Examination
	Theory Total 70 marks, Duration 2 hrs
	Multiple choice questions- $10 \ge 10$ Marks
	Short questions- $(10 \text{ out of } 12) \ge 30 \text{ Marks},$
	Short Essays (6 out of 8) $x = 30$ Marks,

REFERENCES

- Alappat, H.J. & Biju Kumar, A. (1996). Aquarium Fishes (A Colourful Profile). B.R. Publ., Delhi
- 2. Atz, W. (1971). Aquarium Fishes. Pelham Books Ltd., London.
- 3. Axelrod, H.R. & Vorderwinkler, W. (1962). Encyclopedia of Tropical Fishes with Special Emphasis on Techniques of Breeding. TFH. Publ., Inc., NJ.
- 4. Biju Kumar, A. & Alappat, H.J. (1996). A Complete Guide to Aquarium Keeping. Books for All, Delhi.
- 5. Dholakia, A.D. (2009). Ornamental fish Culture & Aquarium Management. Daya Publishing House, Delhi.
- 6. Faulkner, D. & Atz, J.W. (1971). Aquarium Fishes, Their Beauty, History and Care. Pelham Books, London.
- 7. Favre, H. (1977). Dictionary of the Freshwater Aquarium. Wardlock Ltd., London.
- 8. Frey, H. (1961). Illustrated Dictionary of Tropical Fish. TFH. Publ. Inc., NJ.
- 9. Gohm, D. (1984). Tropical Fish. Hamlyn Publ. Group Ltd., London.
- 10. Gopakumar, G. (2011). Marine Ornamental fish Culture: Package of Practices. CMFRI Cochin.
- 11. ICAR (2011). Handbook of Fisheries and Aquaculture. ICAR, New Delhi.
- 12. Innes, W.T. (1953). Exotic Aquarium Fishes. Innes Publ. Co., Philadelphia.
- 13. Kurup, M.B. (2008). Ornamental Fish Farming, Breeding and Trade. Dept. Fish. Govt.

Programme							
Course Name	DIVERSE ANIMAL LIF	DIVERSE ANIMAL LIFE					
Type of	DSC B						
Course							
Course Code	UC3DSCBTS202						
Course	200						
Level							
Course	This course offers a con	nprehensiv	e overview	of the diver	sity of anin	nal life	
Summary	on Earth, exploring the e	volutionary	relationsh	ips, functiona	al adaptatio	ns, and	
	ecological roles of differ	ent animal	groups. It c	overs the ma	jor phyla, c	lasses,	
	and representative sp						
	physiology, behavior, an			-			
Semester	III	Cre	dits		4	Total	
						Hours	
	Learning Approach	Lecture	Tutorial	Practical	Others		
Course	Fc	t in 1	0.21				
Details	LS	3	[∞] ∠ 0	1	0	75	
Pre- requisites, if any						<u> </u>	
			_//				

CO No.	Expected Course Outcome	Learning Domain*	PO No
	Understand the evolutionary relationships among major animal groups.	U	2,3,10
	Recognize the morphological and physiological adaptations of diverse animals.	K	2,3,10
	Explore the ecological roles and behaviors of different animal species.	S	2,3,10
4.	Analyze the impact of environmental changes on animal diversity.	AN	2,3,10
	Develop an appreciation for the complexity and interdependence of life forms.	AP	2,3,10

Module	Units	Course description	Hrs. 45	CO No.
	1.1	Introduction to Animal Diversity: Principles of taxonomy and		
		systematics.	5	2
		Overview of the tree of life and major animal		
		phyla.		
	1.2	Porifera and Cnidaria		
		Characteristics of sponges (Porifera) and their ecological roles.		
1		Cnidarians: jellyfish, corals, and sea anemones.(BRIEF ACCOUNT)		
-		Life cycles and symbiotic relationships in Cnidaria		
		(OBELIA).	10	2,3,4
		Platyhelminthes and Nematoda 0 2 1		, ,
		Flatworms (Platyhelminthes): free-living and parasitic		
		forms. Eg: Schistosoma, Taenia solium Roundworms		
		(Nematoda): Diversity and Ecological significance. Eg:		
		Wuchereria bancrofti, Ascaris lubricoides		
		Parasitic adaptations and life cycles.		
	2.1	Mollusca: overview of molluscan diversity: bivalves,		
		gastropods, cephalopods. Eg: Sepia, sycon and pinctada		
2		(Morphological and physiological adaptations).		
		Ecological roles and economic importance of molluscs.		
		Annelida and Arthropod: overview of Annelida and		
		arthropod. Segmented worms (Annelida): earthworms,	10	1,2,4
		leeches, and polychaetes.		
		Arthropods: diversity and success of insects, arachnids,		
		crustaceans. Exoskeleton and molting process in arthropods.		
	2.2	Echinodermata-Echinodermata Characteristics and		
		diversity of echinoderms (Phylum Echinodermata).		
		Overview of major classes: Asteroidea, Ophiuroidea,	5	2,4
		Echinoidea, Holothuroidea. Echinoderm structure, function,		
		and regeneration.(star fish)		
	3.1	Chordate: Overview and Non-vertebrate Chordates		
		Characteristics of the phylum Chordate.	5	3,2
		Non-vertebrate chordates: tunicates and lancelets.		
		Evolutionary significance of chordate features.		

	3.2	Amphibians		
		Evolution and diversity of amphibians: frogs, salamanders,	5	2,4
		caecilians.		,
		Life cycle and metamorphosis(frog) Amphibians		
3		as ecological indicators.		
	3.3	Reptiles		
		Characteristics and classification of reptiles: turtles, lizards,		
		snakes, crocodilians.		
		Adaptations for terrestrial life.		
		Reptilian reproduction and thermoregulation.	10	
		Birds		1,2,4
		Evolution and characteristics of birds.(eg: archaeopteryx)		
		Adaptations for flight: feathers, skeletal modifications,		
		respiratory system.		
		Behavioral ecology and migration patterns. (brief account)		
	3.4	Mammals		
		Overview of mammalian diversity:		
		monotremes, marsupials, placentals.		
		Characteristics: hair, mammary glands, endothermy.		
		Mammalian reproductive strategies and parental care. Aquatic		
		mammals and its examples Conservation of Animal Diversity	10	1,3
		Threats to animal diversity: habitat loss, climate change,		
		pollution.		
		Conservation strategies: protected areas,		
		captive breeding, restoration ecology		
4		PRACTICALS		
		1. Introduction to laboratory equipment and safety		
		procedures.		
		2. Microscopy basics: using light and dissecting		
		microscopes.		
		3. simple identification (5 invertebrate/5 vertebrate		
		organism)	30	5
		4. Microscopic examination of sponge cells, spicules,		
		honey bee sting		
		5. Feeding activity of paramecium		
		6. Identification of protozoans in pond water sample.		
		7. Field study/museum visit /zoo visit –report		
5		Teacher Specific Module		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Classroom lectures					
Approach	Direct Instruction:, Explicit Teaching, E-learning,					
	Interactive Instruction:, Active co-operative learning, Seminar, Group					
	Assignments Authentic learning, , Library work and Group discussion,					
	photography Presentation by individual student/ Group representative					
	Presentation by individual student/ Group representative					
Assessment	MODE OF ASSESSMENT					
Types	A. Continuous Comprehensive Assessment (CCA)					
	Theory Total=25 marks					
	Quiz/ Test Papers/ seminars / entrepreneur interaction					
	Practical Total 15 marks					
	Lab performance/Lab report/ Viva Voice/Field study report					
B. End Semester Examination						
	Theory Total 50 marks, Duration 1.5 hrs.					
	Multiple Choice Questions $-12 \times 1 = 12$ marks					
	Short questions-(6 out of 8) $x = 18$ marks					
	Short Essays (5 out of 7) x $4 = 20$ marks					
	Practicals: Total 35 marks Duration- 2 hrs.					
	Record 10 marks, Examination 25 marks: spotter identification-5					
	marks, viva -5 marks, Experiments- 10 marks. Field study/museum					
	visit /zoo visit –report-5 marks.					

References

- 1. Anderson, T.A. (2001). Invertebrate Zoology (2nd edn). Oxford University Press, New Delhi.
- 2. Ashok Verma (2017). Principles of Animal Taxonomy. Narosa Publishing home pvt. Ltd.
- 3. Barnes, R. D. (1987). Invertebrate Zoology. Saunders College Publishing/Harcourt Brace; 5th revised edition.
- 4. Barrington, E. J. W. (2012). Invertebrate Structure and Functions. Affiliated east-west press Pvt. Ltd. New Delhi, 2nd edition.
- 5. David, M. H, Craig Moritz and K.M. Barbara (1996). Molecular Systematics. Sinauer Associates, Inc.
- 6. Hickman Jr., Cleveland, Larry Roberts, Susan Keen, Allan Larson, and David Eisenhour (2011). Animal Diversity. McGraw-Hill Companies, Inc. NY.
- 7. Kapoor, V.C. (2017). Theory and Practice of Animal Taxonomy. 8th edition, Oxford and IBH Publishing Co., Pvt. Ltd. New Delhi.

- 8. Margulis, Lynn and M.J. Chapman (2001). Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth (4th edn.). W.H. Freeman & Company, USA.
- 9. Mayer, E. (2014). Principles of Systematic Zoology. 2nd edition, McGraw Hill Book Company, Inc., NY.
- 10. Narendran, T.C. (2008). An introduction to Taxonomy. Zoological survey of India.
- 11. Strickberger, M.W. (2013). Evolution. Jones and Bartlett Publishers, London.
- 12. Simson G. G. (2012). Principles of animal taxonomy. Scientific publishers, India.
- 13. Winston, J.E. (2000). Describing species: Practical Taxonomic Procedures for Biologists. Columbia University.

Programme							
Course Name	Techniques in Biochemistry and Forensic Science						
Type of Course	DSC B						
Course Code	UC3DSCBCH202						
Course Level	200-299						
Course Summary	This course provides a comprehensive understanding of advanced techniques widely used in biochemistry, molecular biology and forensic science with a focus on practical applications in research and diagnostics. Students will gain both theoretical knowledge and hands- on experience, preparing them for careers in various scientific fields.					science with a lents will gain	
Semester	3	Credits		4	Total Hours		
	Learning	Lecture	Tutorial	Practical	Others		
Course Details	Approach	3	0	1		75	
Pre-requisites, if any	,if Nil Est. in 1921						

CO	Expected Course Outcome	Learning	PO No		
No.		Domains *			
	Develop a comprehensive understanding of various biochemical				
1	and forensic techniques used in analysing biological samples.	K, U, An	1,2,3,4		
2	Evaluate diverse aspects of chromatographic techniques	U, E, A	1,2,3,9,		
			10		
3	Explore electrophoresis and blotting methods	E, An, A	1,2,3,9		
4	Explain the fundamental principles of spectroscopy,	U, An, S	1,2,3,4		
	colorimetry, centrifugation and microscopy				
5	Demonstrate the crime scene sample collection and	U, E, C	1,2,3,9		
	Processing				
6	Describe the role of DNA fingerprinting role in clinical settings, such	U, E, A	1,2,4,6,		
	as paternity/maternity testing		8		
7	Apply techniques in biochemistry, molecular biology, forensic	U, S, Ap	1,2,3,9,		
	science, and biotechnology		10		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),					
Interes	t (I) and Appreciation (Ap)				

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
	1.1	Introduction to Biochemical Techniques	1	1
1.	1. 1.2 Chromatography- Terminology, classification based		3	2
Separation		on principle and type of chromatographic bed used,		
Technique	Technique and the physical state of mobile phase.			
S		Planar chromatography-Principle, procedure		
	1.3	& applications of paper chromatography and	3	2
	1.4	Column chromatography- Principle, procedure	3	2
		& applications of Affinity Chromatography,		
		Gel Exclusion Chromatography		
	1.5	Electrophoretic techniques-Introduction, principle,	3	3
		procedure and applications of AGE and PAGE		
	1.6	Blotting techniques- Southern, Northern and	2	3
		Western		
	2.1	Spectroscopy- Types of spectroscopy (an outline	2	4
		study)		
2.	2.2	Colorimetry-Beer Lambert's law	2	4
Spectroscopy,	2.3	Instrumentation and applications of colorimeter and UV-	4	4
• /	olorimetery, Visible Spectrophotometer			
Centrifugation and	2.4	Centrifugation-Principle and types	6	4
	2.5	Introduction to Microscopy (Overview)	1	4
3.	3.1	Source of DNA in Forensic cases, PCR	5	5
Crime site	3.2	ELISA, RIA	5	5
sample	3.3	DNA Finger Printing- Paternity and maternity	5	6
collection		Testing		
and				
4.	4.1	Beer Lambert's law verification	4	7
Practical	4.2	Paper Chromatography/Thin layer Chromatography	8	7
	4.3	Electrophoresis (Demonstration)	8	7
	4.4	DNA Isolation (from onion/Green peas)	5	7
	4.5	Estimation of isolated DNA	5	7
5. Teacher spe	cific cont	ent/ Teacher facilitated activities		<u> </u>

Teachingand Learning	Classroom Procedure (Mode of transaction)
Approach	Direct Instruction: Lecture, tutorials, e- resources, animated videos, virtual lab Indirect session: Group discussion, seminar presentation Practical: Hands on learning, real world application, problem solving

MODE OF ASSESSMENT					
A. Continuous Comprehensive Assessment (CCA)					
Theory 25 marks					
1. Poster making/model building (2 marks)					
2. Seminar presentation/Quiz (5 marks)					
3. Involvement in group discussion (3 marks)					
4. Multiple Choice questions (10 marks)					
5. Assignment (2 marks)					
6. Open book test (3 marks)					
Practical 15 marks*					
1. Viva (5 marks)					
2. Record (5 marks) St. IN 1921					
3. Laboratory involvement (5 marks)					
*This mark to be converted to 7.5 marks					
B. End Semester Examination					
Written examination for one and a half hours (50 marks)					
Practical examination (35 marks)*					
*This mark to be converted to 17.5 marks					
	A. Continuous Comprehensive Assessment (CCA) Theory 25 marks 1. Poster making/model building (2 marks) 2. Seminar presentation/Quiz (5 marks) 3. Involvement in group discussion (3 marks) 4. Multiple Choice questions (10 marks) 5. Assignment (2 marks) 6. Open book test (3 marks) Practical 15 marks* 1. Viva (5 marks) 2. Record (5 marks) 3. Laboratory involvement (5 marks) *This mark to be converted to 7.5 marks B. End Semester Examination Written examination for one and a half hours (50 marks) Practical examination (35 marks)*				

1. Braithwaite, A., & Smith, F. J. (1995). Chromatography: Principles and Instrumentation. Blackie Academic and Professional.

- 2. Butler, J. M. (2005). Forensic DNA Typing. Academic Press Publishers.
- **3**. Goodwin, W., Linacre, A., & Had, S. (Wiley Publishers, 0470710195). An Introduction to Forensic Genetics.
- 4. Jain, J. L., Jain, S., & Jain, N. (2022). Fundamentals of Biochemistry. S. Chand Publishing
- 5. Murphy, D. B. (2012). Fundamentals of Light Microscopy and Electronic Imaging.Wiley-Blackwell Publishers.
- 6. Tang, Y. W., & Stratton, C. W. (2010). Advanced Techniques in Diagnostic Microbiology. Springer New York, NY.
- Vasudevan, D. M., & Sreekumari. (2022). Textbook of Biochemistry for Medical Students. Jaypee Brothers Medical Publishers.
 Suggested Readings
- Patrono, C., & Peskar, B. A. (Eds.). (1995). Radioimmunoassay in Basic and Clinical Pharmacology (Handbook of Experimental Pharmacology No. 82). Springer Publishers.
- 2. Pound, J. (2008). Immunochemical Protocols. Springer Science & Business Media

Programme								
Course Name	SCIENCE OF ORGANIC FARMING							
Type of	MDC							
Course								
Course Code	UC3MDCBTS200							
Course Level	200							
Course	This course helps stud	ents to gai	n knowled	ge and skills	necessary	to practice		
Summary	organic farming and the	production	of healthy	food				
Semester	III		Credits		3			
Course						Total		
Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours		
		3	0	0	0	45		
Pre-				L		•		
requisites, if								
any								

Est. in 1921

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To introduce the principles and benefits of organic farming	U	2,3,10
2	To equip students with the knowledge and skills necessary to practice organic farming and the production of healthy food	А	2,3,10
3	To introduce the concept of organic ecosystem and the basics of plant physiology and nutrition	U	2,3,10
4	To know the importance of soil health in organic farming	Е	2,3,10
5	To inculcate the importance of doing organic farming as the responsibility of every human being to ensure food safety and food security.	С	2,3,7,10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E) t (I) and Appreciation (Ap)), Create (C), Sk	äll (S),

Module	Units	Course description	Hrs 45	CO No
		Concept of Organic Farming	10	
	1.1	Principles of Organic farming		1
1	1.2	Benefits of Organic farming		1
	1.3	Organic Ecosystem and their concept		3
	1.4	Eco friendly farming-Natural farming, Organic		1
		farming and Zero budget farming		
		Soil and Plant Nutrition	15	
	2.1	Types of soil, Composition of soil, Soil profile, Soil texture and Soil pH		4
	2.2	Role of soil in Organic Farming, Soil health		4
	2.3	Soil factors affecting plant growth: light, heat, water, humidity, pH and nutrition C: N ratio of good fertile soil 2		4
2	2.4	Structural organization & function of different Plant organs		3
	2.5	Plant nutrients- Micro and Macro, Importance & Deficiency symptoms		3
	2.6	Organic manures, Green manure, Methods of composting, Importance of mulching		3
	2.7	Soil microorganism: Mycorrhiza, Rhizosphere- Significance, Role of biofertilizers in crop production		4
		Organic farm management and crop management	15	
	3.1	Land preparation - Tools and Technique		2
	3.2	Preparation of seed bed, manuring, sowing, watering and raising of seedling		2
	3.1	Pest control: Biological and Organic methods		2
	3.2	Integrated Pest Management		2
3	3.3	Crop rotation: Need and benefits		2
	3.4	Harvesting and Post Harvesting Management		2
		Certification and Marketing	5	
	3.5	Inspection, Certification & Labelling procedure		5

COURSE CONTENT Content for Classroom transaction (Units)

	3.6	Marketing & Export	5
4		Teacher Specific Module	

Teaching	Classroom Procedure (Mode of transaction)					
and	Lectures, Videos, Seminars, Power point presentations, Organic farm visit and					
Learning	Field study.					
Approach						
	MODE OF ASSESSMENT					
Assessment	A. Continuous Comprehensive Assessment					
types	Theory Total 25 Marks					
	Quiz/Test Papers/Seminar/ Field Study					
	B. End Semester Examination					
	Theory: Total - 50 Marks, Duration 1.5 hrs					
	Fill in the blanks $-10 \ge 10$ Marks					
	Short questions- $(10 \text{ out of } 12) \ge 20 \text{ Marks}$					
	Short Essays (5 out of 7) x 4 =20 Marks					

REFERENCES

1. Balasubramanian, R., Balakishnan, K., & Siva Subramanian, K. (2013). Principles and practices of organic farming. Satish Serial Publishing House.

Est. in 1921

- 2. Dushyent Gehlot. (2005). Organic farming- standards, accreditation, certification, and inspection. Agrobios, India.
- 3. Mukund Joshi, & Prabhakarasetty, T.K. (2006). Sustainability through organic farming. Kalyani publishers, New Delhi.
- 4. Palaniappan, S.P., & Annadurai, K. (1999). Organic farming-Theory and Practice. Scientific publishers, Jodhpur, India.
- 5. Tarafdar, J.C., Tripathi, K.P., & Mahesh Kumar, M. (2009). Organic agriculture. Scientific Publishers, India.
- 6. Tiwari, V.N., Gupta, D.K., Maloo, S.R., & Somani, L.L. (2010). Natural, organic, biological, ecological, and biodynamic farming. Agrotech Publishing Academy, Udaipur.

SUGGESTED READINGS

- 1. Alvares, C. 1996. The Organic Farming Source Book. The Other India Press, Mapusa, Goa.
- 2. Dongarjal R. P. and Zade S.B. 2019. Insect Ecology and Integrated Pest Management, Akinik Publications, New Delhi.
- 3. Dr. Pratiksha Raghuvanoki. Handbook of Organic Farming.
- 4. Dushyent Gehlot. 2005. Organic Farming- standards, accreditation, certification and inspection. Agribios, India.
- 5. Gupta, M., 2004. Organic Agriculture Development in India. ABD publishers, Jaipur, India.

- 6. Guideline of National Project on Organic Farming, Department of Agriculture and Cooperation, INM Division, Ministry of Agriculture, Govt. of India.
- 7. Organic Farming: The Ecological System- Agronomy Monograph 54, ASA, USA.
- 8. Palaniappan, S.P. and Annadurai, K. 1999. Organic Farming- Theory and Practice, Scientific Publishers, Jodhpur, India.
- 9. Sathe, T.V. 2004, Vermiculture and Organic Farming. Daya Publishers.
- 10. Sharma, Arun K. 2002. A Handbook of Organic farming. Agrobios, India.
- 11. Subha Rao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New Delhi.

Programme								
Course Name	PUBLIC HEALTH AWARENESS	H, HYGIEI	NE AND SA	ANITATIO	N: AN			
Type of Course	VAC							
Course Code	UC3VACBTS200	UC3VACBTS200						
Course Level	200	200						
Course Summary	This course provid public health and communities.	1		e	e			
Semester	III		Credits		3			
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours		
		3	0	0	0	45		
Pre- requisites,	None				1			
if any	Fs	t in 1	921					

CO No.	Expected Course Outcome	Learning Domains *	PO No				
1	To inculcate a general awareness among the students	K,U	2,3,10				
	regarding the real sense of health.						
2	To understand the role of balanced diet in maintaining	K,U	2,3,10				
	health.						
3	To motivate them to practice yoga and meditation in daily	U, An, E	2,3,6,10				
	life.						
4	To aware them transmission of food and water borne	An, E	2,3,6,10				
	diseases						
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate I, Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction

			Hrs	СО
Module	Units	Course description	45	No.
1		Dimensions of Health	12	
	1.1	Definition and meaning of health:	2	1
	1.2	Dimensions of health, physical activity and health benefits,	10	1
		Effects of exercise on body systems		
2		Nutrition and Constituents of healthy life style	25	

	2.1	Constituents of balanced diet	3	2
	2.2	Malnutrition and Deficiency diseases.	3	2
	2.3	Life skill education	2	3
	2.4	Emotional adjustment and well being	6	3
	2.5	Yoga, meditation and relaxation. Psychoneuroimmunology	5	3
	2.6	Life style and hypokinetic diseases.	4	3
	2.7	Health and safety in daily life and at work. Dangers of alcoholic	2	3
		abuse		
3		Introduction to food and water borne diseases	8	
	3.6	Briefly mention botulism, salmonellosis, typhoid, cholera and	4	4
		hepatitis A		
	3.7	Potable water, Determination of quality of drinking water	2	4
	3.8	Water purification techniques.	2	4
4		Teacher specific module		
Teaching		Classroom Procedure (Mode of transaction)		
and		Lectures, presentations, videos, group interaction.		
Learning				
Approach		Est. in 1921		
Assessmen	t	MODE OF ASSESSMENT		
types		B. Continuous Comprehensive Assessment		
		Theory Total 25 Marks		
		Quiz/Test Papers/Seminar/Case study and report writing		
		B. End Semester Examination		
		Theory: Total – 50 Marks, Duration 1.5 hrs		
		Fill in the blanks $-10 \times 1 = 10$ Marks		
		Short questions- (10 out of 12) x $2 = 20$ Marks		
		Short Essays (5 out of 7) x 4 = 20 Marks		

- 1. Greenberg, J. S., & Dintiman, G. B. (1997). Wellness creating a life of Health and fitness. London: Allyn and Bacon Inc.
- 2. Francis, G., & Mini, K. D. (Eds.). (2012). Zoological society of Kerala. Kottayam.

Programme	BSc (Honours)	BSc (Honours) Biological Sciences						
Course Name	GENETIC ENGINEERING AND PLANT TISSUE CULTURE							
Type of	DSC A							
Course								
Course Code	UC4DSCB TS2	00						
Course	300							
Level								
Course	This course air	This course aims to provide students with an in-depth understanding of genetic						
Summary	engineering too	ls, techniqu	es and thei	r applications	in biotechnol	ogy. Students will		
	develop practica	al skills in g	genetic man	ipulation, ger	ne cloning, and	l genetic		
	modification of	organisms.	This cours	e also provide	es a comprehei	nsive overview of		
	the principles an	nd techniqu	es involved	in plant tissu	e culture			
Semester	IV	Cr	edits		4	Total		
Course	Learning	Lecture	Tutorial	Practical	Others	Hours		
Details	Approach	3	0	1	Invited	75		
		Es	t. in 1	921	lectures			
Pre- requisites,	NO		m 1 4					
if any			V 🖓					
			61 .	1977-900				

CO		Learning	PO
No.	Expected Course Outcome	Domains*	No
1	Understand the fundamental principles and techniques of genetic engineering.	U	2,3,10
2	Develop practical skills in genetic engineering techniques and laboratory procedures.	A, S	2,3,9, 10
3	Gain knowledge of gene expression regulation and genetic modification methods.	K, U	2,3,9, 10
4	Critically assess and interpret scientific literature on genetic engineering.	S, U	2,3,9, 10
5	Understanding the principles theories and application behind plant cell culture techniques	U, A, An	2,3,9, 10
6	Develop proficiency in sterile technique and aseptic handling of cell cultures	U,A,	2,3,9, 10

7	Acquiring knowledge of plant cell culture	K,U	2,3,9, 10			
	media and their formulation					
8	Gaining hands on experience in plant cell culture	U,S	2,3,9, 10			
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E)	,Create (C), Sk	cill (S),			
	Interest (I) and Appreciation (Ap)					

Module Units CO **Course description** Hrs 45 No. 25 **Genetic Engineering** Fundamentals of Genetic Engineering 6 2 1 1.1 Definition, scope, and historical overview of genetic 1 engineering Techniques for DNA, RNA and plasmid isolation and 4 1.2 2 purification. Methods for quantification and characterization of DNA and RNA samples. **Recombinant DNA technology- tools and techniques** 19 2.1 Enzymes- Restriction endonucleases, Polymerases, Ligase, 1 kinases, and phosphatases. 4 Linkers, Adapters and homopolymer tailing. Cloning vectors- Plasmids, phage, cosmid, BAC, and YAC. 3 1 2.2 Expression vectors Construction of genomic library and cDNA library, PCR 2.3 technique, Hybridization techniques, Southern, Northern, 5 2 western. DNA sequencing 2 Methods of gene delivery. Physical, chemical, and biological 2.4 3 3 methods. Applications of Genetic Engineering: Gene therapy, Metabolite 2.5 engineering, antisense therapy, Gene Knockout, CRISPR-4 4 Cas9 technology 3 Introduction to plant tissue culture 20 3.1 Composition and preparation of plant tissue culture media, 6 5 Cellular totipotency, clonal propagation

3.2	Callus culture, meristem culture types of haploid		
	culture, Embryo culture and embryo rescue; single	6	7
	cell clones, Endosperm culture, Somatic		
	embryogenesis		

	Isolation and fusion of protoplast, Somatic hybridization, Germplasm conservation and cryopreservation	4	8
	Application of plant tissue culture: Application of plant transformation for enhanced quality: Herbicide resistance, insect resistance, abiotic stresses, Plantibodies	4	4

		PRACTICALS	30	
	4.1	Introduction to Laboratory Techniques	4	6
		Safety guidelines and laboratory protocols, Aseptic		
		techniques and proper handling of materials.		
	4.2	GENETIC ENGINEERING	15	
		Nucleic Acid Extraction ,Quantification and		
		amplification		
		DNA extraction from different sources (e.g.,		
		bacteria, plant, animal), Quality assessment and		
		quantification of nucleic acids (spectrophotometry,		2
4		gel electrophoresis), Polymerase Chain Reaction		
		(PCR) and Agarose gel electrophoresis for PCR		
		product analysis		
	4.3	PLANT TISSUE CULTURE	11	
		Media formulation for plant tissue culture and		
		surface sterilization, callus induction and auxiliary		8
		bud culture, Isolation of protoplast		
5		Teacher specific module 92		

Teaching	Classroom Procedure (Mode of transaction)
and	Lectures, presentations, videos, group interaction.
Learning	
Approach	
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment(CCA)
types	Theory Total 25 Marks
	Quiz/Test Papers/Seminar/Case study and report writing

B. End Semester Examination
Theory: Total - 50 Marks, Duration 1.5 hrs
Fill in the blanks $-10 \ge 10$ Marks
Short questions- $(10 \text{ out of } 12) \ge 20 \text{ Marks}$
Short Essays (5 out of 7) x 4 =20 Marks
Practicals Total 35 marks Duration- 2 hrs
Record 10 marks
Examination 25 marks: Performance of Experiments 16
marks Viva-4 marks, research institute visit report- 5 marks

- 1. Brown, T.A. (2017). Genome 4 (4th ed.). Garland Science. ISBN: 978-0815345084.
- 2. Brown, T.A. (2018). Genomes (4th ed.). Garland Science. ISBN: 978-08153450

- 3. Brown, T.A. (2019). Gene Cloning and DNA Analysis: An Introduction (7th ed.). Wiley Blackwell. ISBN: 978-1119072560.
- 4. Chawla, H. S. (2002). Biotechnology in Crop Improvement. CRC Press.
- 5. Gupta, P. K. (2019). Elements of Biotechnology. Rastogi Publications.
- 6. Hammond, J., et al. (2017). Plant Biotechnology. Springer Verlag.
- 7. Henry, R. J. (1998). Practical Application of Plant Molecular Biology. Chapman & Hall.
- Lesk, A.M. (2015). Introduction to Genomics (2nd ed.). Oxford University Press India. ISBN: 978-0198745891.
- Primrose, S.B., & Twyman, R. (2016). Principles of Gene Manipulation and Genomics (8th ed.). Wiley Blackwell. ISBN: 978-1405156660.
- Primrose, S.B., & Twyman, R. (2019). Principles of Gene Manipulation and Genomics (9th ed.). Wiley Blackwell. ISBN: 978-1119163774.
- 11. Razdan, M. K. (2003). An Introduction to Plant Tissue Culture. Springer.
- 12. Singh B.D Biotechnology 2002. Kalyan Publishers New Delhi.
- 13. Snyder, M. (2016). Genomics and Personalized Medicine: What Everyone Needs to Know (1st ed.). OUP-USA. ISBN: 978-0190234768.
- 14. Vasil, A. K. (1984). Cell Culture and Somatic Cell Genetics of Plants (Vols. 1-3). Academic Press.
- 15. Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., & Losick, R. (2014). Molecular Biology of the Gene (7th ed.). Pearson. ISBN: 978-0321762436.
 SUGGESTED READINGS
- 1. Burrell, M.M. (2015). Introduction to Genomics and Proteomics (2nd ed.). Wiley. ISBN: 978-0470850075.
- Fowler, M.R. (2019). Genetic Engineering: Principles and Methods (3rd ed.). CABI. ISBN: 978-1789240605.
- 3. Gibson, G., & Muse, S.V. (2019). Genomics: The Science and Technology Behind the Human Genome Project (2nd ed.). Oxford University Press. ISBN: 978-0198786207.
- 4. Ginsburg, G.S., & Willard, H.F. (2014). Genomic Medicine: Principles and Practice (2nd ed.). Oxford University Press. ISBN: 978-0199334468.
- 5. Ginsburg, G.S., & Willard, H.F. (2016). Essentials of Genomic and Personalized Medicine (2nd ed.). Academic Press. ISBN: 978-0124078652.
- 6. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., & Doebley, J. (2020). Introduction to Genetic Analysis (12th ed.). W.H. Freeman. ISBN: 978-1319149609.
- 7. Katz, L.A., & Bhattacharya, D. (2019). Genomics and Evolution of Microbial Eukaryotes (1st ed.). Oxford University Press. ISBN: 978-0198830202.
- 8. Krebs, J.E., & Goldstein, E.S. (2020). Molecular Genetics and Genomics (1st ed.). Jones & Bartlett Learning. ISBN: 978-1284154544.
- Pevsner, J. (2015). Bioinformatics and Functional Genomics (3rd ed.). Wiley-Blackwell. ISBN: 978-1118581780.
- 10. Wichard, J., & Maertens, A. (2019). Genomic Approaches for Cross-Species Extrapolation in Toxicology (1st ed.). CRC Press. ISBN: 978-0815348023.
- Wonkam, A., Puck, J.M., & Marshall, C.R. (2019). Genomic Medicine in Resourcelimited Countries: Genomics for Every Nation (1st ed.). Academic Press. ISBN: 978-0128133003

Programme	BSc (Honours) Biological Sciences					
Course Name	CELL BIOLOGY					
Type of	DSC A					
Course						
Course Code	UC4DSCBTS201					
Course	200					
Level						
Course	This course provides a co	mprehensive	e understand	ding of the b	basic principle	es and
Summary	complex processes that g	overn the bi	ology of cel	lls.		
Semester	IV		Credits		4	
	Learning Approach	Lecture	Tutorial	Practical	Others	Total
Course						Hours
Details		3	0	1	Invited	75
					lectures	
Pre- requisites,	NO	- 1				<u> </u>
• •						
if any		st in	1001			

СО		Learning	PO
No.	Expected Course Outcome	Domains*	No
1	Deep understanding of the structure and function of cells and	U, K	2,3,9,10
	the processes that govern their behaviour		
2	Demonstrate knowledge of cellular processes, including cell	U, K, A	2,3,9,10
	division, protein synthesis, and signal transduction		
3	Develop critical thinking, skill and research aptitudes in basic	A, S	2,3,9,10
	and applied biology		
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (A	E),Create (C), Sl	kill (S),
Interes	t (I) and Appreciation (Ap)		

COURSE CONTENT

Module			Hrs 45	CO No.
		CYTOLOGY AND CYTOSKELETON	21	
	1.1	Overview of cells: cell theory, Prokaryotic and eukaryotic	5	1
		cell, General organization of eukaryotic and prokaryotic cell		
		Evolution of eukaryotic cell. Plant cell and animal cell.		
1	1.2	Structure and functions of cell organelle; nucleus,	8	1,2
		mitochondria, chloroplast, ribosomes, peroxisomes, Golgi		
		bodies, Lysosomes, Vacuoles and endoplasmic reticulum.		

	1.3	Chromosomes – structure of a typical metaphase chromosome	5	1,2
		- centromere, telomere, chromomere, satellite DNA,		
		nucleosome organization -histones, linker DNA.		
		Polytene chromosomes-Balbiani rings, Lamp brush		
		chromosomes.		
	1.4	Cytoskeletal elements: Structure & functions of Microtubule,	3	1,2
		Microfilaments and intermediate filaments.		
		PLASMA MEMBRANE AND MEMBRANE TRANSPORT	8	
	2.1	Plasma membrane: Structure, functions, and various models	2	1,2
2		of plasma membrane. Membrane transport - active, passive,		
		facilitated - symport, antiport		
	2.2	Cell junctions: Tight junctions, Gap junctions, Desmosomes,	3	1,2
		Hemi desmosome		
	2.3	Cell-cell interaction - selectins, integrins, cadherins,	3	1,2
		CELL CYCLE AND CELL SIGNALLING:	16	
3	3.1	Cell cycle studies; mitosis and meiosis. Regulation of Cell	8	2,3
		Cycle-Role of cyclins and cyclin-dependent kinases, Cell cycle		
		checkpoints Est. in 1921		
	3.2	Cell Birth, lineage and death, Cellular senescence and ageing,	3	2,3
		Apoptosis and Necrosis		
	3.3	Signalling molecules and cell surface, receptors; intracellular	5	2,3
		signal transduction; G protein coupled receptors; plant growth		
	1	factors and hormones,		

		endocrine signalling, quorum sensing and intercellular signalling, Signal peptides, biofilm formation		
4		PRACTICALS	30	
	4.1	Examination of different kinds of cells - Prokaryotic and	4	3
		eukaryotic cell		
	4.2	Identification of cell organelles	4	3
	4.3	Micrometry: a) Calibration using ocular micrometer	4	3
		b) Finding out average cell size		
	4.4	Mounting of polytene chromosome (Drosophila/ Chironomous)	6	3
	4.5	Study of Barr body in human buccal epithelium	4	3
	4.6	Demonstration Squash preparation of onion root tip for	4	3
		mitotic stages		
	4.7	Study of various stages of meiosis	4	3
5		Teacher specific module		

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Lecture, group interaction, seminar, presentations				
Approach	Teaching aids like photographs, models, videos related to the topic can				
	be used				
	MODE OF ASSESSMENT				
Assessment	A. Continuous Comprehensive Assessment (CCA)				
Types	Theory Total=25 marks				
	Quiz/ Test Papers/ seminars				
	Practical Total 15 marks				
	Lab performance/ record				

B. End Semester Examination
Theory Total 50 marks, Duration 1.5 hrs
Fill in the blanks $-10 \ge 10$ marks
Short questions- $(10 \text{ out of } 12) \ge 2 = 20 \text{ marks}$
Short Essays (5 out of 7) x $4 = 20$ marks
Practicals Total 35 marks Duration- 2 hrs
Record 10 marks, Examination 25 marks:
Performance of experiment 20 marks, Viva-5marks,

- 1. B D Singh. (2011). Fundamentals of Genetics. Kalyani Publishers.
- 2. Gardner, A. G. (2020). Principles of Genetics. John Wiley and Sons.
- 3. Griffiths, A., Wessler, S., Lewontin, R., Gelbart, W., Suzuki, D., & Miller, J. (2000). Introduction to Genetic Analysis. Freeman's and Co.
- 4. Karp, G. (2019). Cell and Molecular Biology. Academic Press
- 5. Lodish, H., et al. (2016). Cell Biology. W H Freeman and Co.
- 6. Pollard, T. D., & Earnshaw, W. C. (2002). Cell Biology. Saunder's Publishers.
- 7. Snustad, D., Simmons, M., & Jenkins, J. (2016). Principles of Genetics. John Wiley And Sons Inc.
- 8. Pollard, T. D., & Earnshaw, W. C. (2016). Cell Biology. Saunder's Publishers.
- 9. Becker, W. M., Reece, J. B., & Poenie, M. (2019). World of the Cell. The Benjamin/Cumming's Pub.

Programme BSc (Honours) Biological Sciences							
Course Name	ENZYMOLOGY						
Type of	DSE						
Course							
Course Code	UC4DSEBTS200						
Course Level	200						
Course Summary	mechanisms of enzyme a technology. The applicat pharmaceuticals, and bio immobilization, enzyme techniques.	The course on enzymology provides an in-depth understanding of the principles and mechanisms of enzyme action, enzyme kinetics, enzyme regulation, and enzyme technology. The applications of enzymes in various industries such as food, pharmaceuticals, and biotechnology are covered along with topics such as enzyme immobilization, enzyme purification and enzyme characterization techniques					
Semester	IV		Credits		4		
Course		Lecture	Tutorial	Practical	Others	Total	
Details	Learning Approach					Hours	
		4	0	0	0	60	
Pre-	NO	st. in	1921				
requisites, if		200	-				
any		T) (97					

CO	Expected Course Outcome	Learning	PO No
No.		Domains *	
1	To understand the basic principles of enzymes and their role in biological processes.	U,K	2,3,10
2	To learn the mechanism of action of enzymes and understand the kinetics of enzyme action.	U,K	2,3,10
3	To gain knowledge of various techniques used in enzyme purification and characterization.	U,A	2,3,10
4	To evaluate the broad spectrum applications of enzymes	U,A	2,3,10
	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), C st (I) and Appreciation (Ap)	reate (C), Skill ((S),

Module	Units	Content for Classroom transaction (Units) Course description	Hrs	CO
Wibuuie	Cints		1115	No.
		Introduction to enzymes		
		Historical account, general properties and nature of enzymes		
	1.1	Classification and nomenclature of enzymes.	4	1
		Cofactors and coenzymes. Apoenzymes and holoenzymes		1
		Specificity of enzymes, active site and features, Active site		
	1.2	mapping Fischer and Koshland hypothesis. Proenzymes and	5	1
1		multi enzyme complexes		
	1.3	Enzymes involved in digestion. Enzymes in metabolic	5	1,2
		pathways with suitable examples.		,
		Mechanism of Enzyme action		
		Activation energy, transition state. Mechanism of catalysis		
	2.1	with suitable examples on role of metal ions and	5	1,2
		coenzymes. Acid base catalysis and covalent catalysis		
	2.2	Enzyme kinetics, Terms used in enzyme kinetics. ES	6	2
		Complex and Michaelis-Menten Equation and Hill Equation		
		Enzyme Inhibition		
2		Reversible and Irreversible Inhibitors Competitive, Non		
	2.3	competitive and uncompetitive	8	1,2
		inhibitions. Enzyme regulation; Allosteric, Feed back and		
		covalently regulated enzymes		
	3.1	Methods employed in extraction and purification of enzymes.	5	3
		Precautions to be adopted in enzyme purification		
	3.2	Subcellular fractionation and centrifugation, salting out,	5	3
		techniques in electrophoresis and chromatography		
3	3.3	Methods of protein estimation. ELISA and Western blotting.	5	3
		Enzymes in Clinical biochemistry		
		Enzymes used in clinical diagnosis and clinically useful		
4	4.1	inhibitors with suitable examples, Isoenzymes, Enzym	e 6	4
		immobilization		
		Therapeutic enzymes		
		Enzyme Technology		
	4.2	Industrial application of enzymes Enzymes used	6	4
		in food and dairy industry		
5		Teacher Specific Module		

COURSE CONTENT

	Classroom Procedure (Mode of transaction)
	Classroom Procedure
Teaching and	Lectures, group interactions, group seminar, power point presentations
Learning	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
Approach	
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA)
Types	Theory Total = 30 marks
	Test Papers/Assignments/Seminars
	B. End Semester examination
	Theory Total = 70 marks (Duration 2 hrs)
	Multiple Choice Questions $(1X \ 10) = 10$ marks
	Short Questions (10 out of 12) X $2 = 30$ marks
	Short essays (6 out of 8) $X = 30$ marks

- 1. Bender, D., Botham, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2018). Harper's Illustrated Biochemistry, New York, NY: McGraw-Hill Education.
- 2. Jain, J. L., Jain, S., & Jain, N. (2016). Fundamentals of Biochemistry. New Delhi, India: Jaypee Brothers Medical Publishers.
- Nelson, D. L., & Cox, M. M. (2017). Lehninger Principles of Biochemistry. New York, NY: W. H. Freeman.
- 4. Satyanarayana, U., &Chakrapani, U. (2019). Biochemistry (4th ed.). New Delhi, India: Elsevier Books and Allied (P) Ltd.
- 5. Sawhney, S. K., & Singh, R. (2016). Introductory Practical Biochemistry. New Delhi, India: Narosa Publishing House.
- 6. Thimmaiah, S. K. (Ed.). (2015). Standard Methods of Biochemical Analysis. Ludhiana, India: Kalyani Publishers.
- 7. Voet, D., Voet, J. G., & Pratt, C. W. (2016). Principles of Biochemistry. New York, NY: Wiley.
- 8. Vasudevan, D. M., &Sreekumari, S. (2014). Textbook of Biochemistry. New Delhi, India: Jaypee Brothers Medical Publishers.
- 9. Rao, B. S., & Deshpande, V. (Eds.). (2017). Experimental Biochemistry: A Student Companion. New Delhi, India: I. K. International Pvt. Ltd.

SUGGESTED READINGS

- 1. Aehle,W. (2007). Enzymes in Industry: Production and Applications. Weinheim, Germany: John Wiley & Sons Inc.
- 2. Berg, J. M., Tymoczko, J. L., &Stryer, L. (2002). Biochemistry. New York: W. H. Freeman.
- 3. McKee, T., & McKee, J. R. (2003). Biochemistry: The Molecular Basis of Life. New York: Oxford University Press.
- 4. Palmer, T., & Bonner, P. (2007). Enzymes: Biochemistry, Biotechnology, Clinical Chemistry (2nd ed.). Chichester, West Sussex, England: Horwood Publishing Limited

Programme	BSc (Honours) Biologica	al Sciences					
Course Name	RESEARCH METHODO	RESEARCH METHODOLOGY AND BIOSTATISTICS					
Type of	DSE						
Course							
Course Code	UC4DSEBTS201						
Course	200						
Level							
Course	This course aims to p	This course aims to provide a comprehensive understanding on the research					
Summary	methodologies used in b	iosciences. The develo	pment of cr	itical thinking	skills and		
	the techniques and tool	the techniques and tools required to design and conduct scientific research are					
	learned. The statistical	learned. The statistical methods for analyzing and evaluating data, developing					
	critical thinking skills and	critical thinking skills and the ability to evaluate and interpret scientific literature are					
	emphasized along with n	•	-				
Semester	IV	Credits		4			
Course	Learning Approach	Lecture Tutorial	Practical	Others	 Total		
Details		St. 111 1921			Hours		
		4 0	0	0	60		
Pre-	None				1		
requisites, if	()						
any							
<u>ب</u>							

CO		Learning	
No.	Expected Course Outcome	Domains	PO No
		*	
1	To understand the fundamental principles and concepts of research	U,K	1,2,3,10
	methodology and design.		
2	To gain skills in designing and conducting experiments, including	U,E	1,2,3,10
	hypothesis formulation, sample collection, and experimental design.		
3	To learn methods of data collection, analysis, and interpretation using	U,A	1,2,3,10
	appropriate statistical methods.		
4	To evaluate and observe research articles and scientific literature for	U	1,2,3,10
	enhancing scientific writing skills, including the preparation of research		
	proposals, reports, and manuscripts.		
5	To communicate research findings effectively through written reports and	A,S	1,2,3,10
	presentations.		
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),	Skill (S),	
Interes	t (I) and Appreciation (Ap)		

Module	Units	Course description	Hrs	CO
			60	No.
	1.1	Introduction to Research- Definition, Objectives and	5	1
		characteristics of research.		
	1.2	Types of Research- Basic, Applied and Action research,	5	1
		Exploratory and Descriptive, Ex-post facto		
1		research.		
	1.3	Identification of Research Problem Sources of research		
		problem, Criteria for the selection of research problem. Research		
		design, Rationale, Statement of problem, Setting objectives.		
		Definition of concepts, operational definition, variables	5	1,2
		independent and dependent, control and intervening variables,		
		limitations and delimitation. Hypothesis - Meaning and		
		importance, types of hypotheses.		
	2.1	Methods of Collecting Primary Data- Questionnaire,		
		preparation of schedules, interview method, case study method,	5	2,3
		experimentation method and sources of		
		secondary data. Editing and Coding the Data		
	2.2	Organization of Data - Classification - meaning and objectives,		
		types of classification. Representation of Data - Diagrammatic		
		and graphical representation - significance of diagrams and		
2		graphs - general rules for constructing diagrams - types of	5	2,3
		diagrams, graphs of time series, graphs of frequency		
		distribution. Interpretation and Report Writing-Meaning of		
		interpretation, precautions and essentials for good report,		
		footnotes and bibliographical citations		
	2.3	Methods - Survey, observation, interview,		
		experimental, clinical methods. Tools Questionnaire, Schedule	5	3
		(for interview and observation) Rating Scales, Attitude		
		Scales. Reliability and validity.		
	3.1	Introduction to Biostatistics: Variable and attribute; Population	5	3
		vs. sample; Census vs sample survey;;		
	3.2	Arrangement of data; Frequency distribution.	5	3
		Graphical presentation of data: Line diagram; Bar diagram, Pie		
3		chart; Histogram,		
	3.3	Level of significance, Probability, Normal distribution, Error of	_	c.
		inference, Student's t-test, Paired t-test, Fisher's t-test, Chi-	5	3
		square test and ANOVA. Introduction to SPSS		
	4.1	Structure and Components of Research Reports Types of	5	4
		Reports		
		Layout structure and language of typical reports		

COURSE CONTENT

	4.2	Preparation of Project Proposal		
4		Title, Abstract, Introduction-Rationale, Objectives,	5	5
		Methodology- Time frame and work plan, Budget and		
		justification, References		

	4.3	Preparing research paper for journals, seminars and	5	5
		conferences. Impact factor of a journal, citation index, ISBN &		
		ISSN		
5		Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)					
and	ectures, group interactions, group seminar, power point presentations. Solving					
Learning	problems in biostatistics					
Approach						
	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources					
	MODE OF ASSESSMENT					
Assessment	A. Continuous Comprehensive Assessment (CCA)					
Types	Theory Total = 30 marks					
	Test Papers/Assignments/Seminars					
	B. End Semester examination					
	Theory Total = 70 marks (Duration 2 hrs)					
	Multiple Choice Questions $(10 \text{ X} 1) = 10 \text{ marks}$					
	Short Questions (14 out of 16) X 2= 28 marks					
	Short essays (8 out of 10) X 4= 32 marks					

- 1. Bandarkar, P.L. & Wilkinson, T.S. (2000). Methodology and Techniques of Social Research. Himalaya Publishing House.
- 2. Batnagar, G.L. (1990). Research Methods and Measurements in Behavioural and Social Sciences. Agri. Cole Publishing Academy.
- 3. Biju, Dharmapalan. (2012). Scientific Research Methodology. Narosa Publications.
- 4. Gupta, S.F. (2002). Statistical Methods. Sultana Chand and Sons, 3rd Revised Edition.
- 5. Kothari, C.R. (2000). Research Methodology- Methods and Techniques (2nd ed.). New age International (P) Ltd. Publishers.
- 6. Mukherjee, R. (1989). The Quality of Life: Valuation in Social Research. Sage Publications.

SUGGESTED READINGS

- 1. Babbie, E. (2016). The practice of social research. Cengage Learning.
- 2. Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches.Sage publications.
- 3. Leedy, P. D., & Ormrod, J. E. (2014). Practical research: Planning and design. Pearson.
- 4. Rosner, B. (2015). Fundamentals of biostatistics. Cengage Learning.
- 5. Sullivan, L. M. (2018). Essentials of biostatistics in public health. Jones & Bartlett Learning research: Planning and design. Pearson.

Programme								
Course Name	THE MOLECULES OF	LIFE						
Type of	DSC-B							
Course								
Course Code	UC4DSCBTS202							
Course Level	200							
	The course is designed	to get a c	lear idea o	on the basic	biomolecule	es and their		
Course	importance in the various biochemical processes in life so that the course builds a							
Summary	base for the students to	compreher	nd and artic	culate the ad	vanced conc	cepts in life		
	sciences. The basic labor	atory pract	tices and st	udy of bioch	emical analy	vsis are also		
	incorporated.							
Semester	IV		Credits		4			
Course						Total		
Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours		
		3	0	1	0	75		
Pre-					•			
requisites, if	E	st. in	1921					
any		See. 11						

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To identify the different types of biomolecules such as lipids, carbohydrates, proteins and nucleic acids	U	2,3,10
2	To differentiate the structural and functional characters of different biomolecules	A	2,3,10
3	To understand the coordinated functions of different biomolecules in a complex living system	A/An	2,3,10
4	To compare the structure and functions of biomolecules	А	2,3,10
5	To describe the structure and functions of vitamins and hormones	U	2,3,10
6	To gain experience in basic laboratory practices in biochemistry and qualitative analysis of carbohydrates and proteins	A	2,3,10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), C et (I) and Appreciation (Ap)	Ereate (C), Skill	l (S),

COURSE CONTENT

Madula	T Ins 4 a	Units Course description					
Module	Units	Course description	Hrs	CO No			
	1 1		45	No.			
	1.1	Carbohydrates: Classification of Carbohydrates with examples-	5	1,2,3,4			
		monosaccharides, disaccharides and oligosaccharides; their					
		structure and functions;					
		Polysaccharides - occurrence, structure, isolation, properties and					
		functions of homoglycans- starch, glycogen, cellulose, dextrin.					
	1.2	Occurrence, structure, properties, and functions of heteroglycans –	5	1,2,3,4			
	1.2	bacterial cell wall polysaccharides, glycoaminoglycans, agar, blood	5	1,2,3,1			
		group substances and sialic acids. Glycolipids and Glycoproteins					
		and their biological applications.					
1							
1	1.3	Lipids: Classification of lipids with examples; their structure	5	1,2,3,4			
	1.5	and functions.	5	1,2,3,7			
		Complex lipids- phospholipids -classification, structure and					
		functions. Amphipathic lipids -membranes, micelles, emulsions and					
	1.4	liposomes Ceramides and sphingomyelins. Eicosanoids, structure	3	1,2,3,4			
	1.4	and functions of prostaglandins, thromboxanes, leukotrienes Types	5	1,2,3,7			
		and functions of plasma lipoproteins					
		Steroids -cholesterol structure and biological role -bile acids, bile					
	1.5	salts. Sterols in Plant system: Phytohormones: Brassinosterroids	2	1,2,3,4			
		(functions); Sterols in microbial system: mycosterols.		y y- y			
		Proteins: Amino acids- Structure and properties,					
	2.1	Classification of proteins on the basis of solubility and shape,	3	1,2,3,4			
		structure, and biological functions Denaturation and renaturation of					
		proteins.					
		Primary structure -determination of amino acid sequence of					
2	2.2	proteins. Ramachandran plot, Secondary, tertiary and quaternary	3	1,2,3,4			
		structures of proteins. Study with appropriate					
		examples and functions					
		Nucleic Acids: Components of nucleic acids, Nucleotide					
	2.3	structures, Watson -Crick model of DNA structure. A, B	3	1,2,3,4			
		and Z DNA					
	2.4	RNA Structure: Types of RNA; structure of mRNA, tRNA and	3	1,2,3,4			
		rRNA,Si RNA, micro RNA with emphasis on importance of					
		structure to its function					
		Vitamins: Vitamins -water soluble -thiamine, riboflavin, niacin,					
	3.1	pyridoxine, folic acid, ascorbic acid-source,	5	5			
3		structure, biochemical functions, deficiency diseases, daily					
		Requirements					

	3.2	Fat soluble -vitamin A, vitamin D2, vitamin E and vitamin	3	5
		K -sources, structure, biochemical functions, deficiency		
		diseases, daily requirements.		
	3.3	Hormones: different types, structures, their biological	3	5
		functions and disorders.		
	3.4	Mechanism of action of peptide and steroid hormones	2	5
		Techniques in Biochemistry Laboratory- Practicals	30	
	4.1	Laboratory Safety Practices, Preparation of normal, molar,	5	6
		percentage solution and dilution of stock solutions		
	4.2	Determination of pH by using pH meter. Preparation of	10	6
4		reagents involved in qualitative analysis		
		Systematic analysis of carbohydrates and proteins in the		
	4.3	given unknown samples.	15	6
		Quantitative Analysis of Protein by Biuret Method		
5		Teacher Specific Module		

	Classroom Procedure (Mode of transaction)
Teaching and	Lectures, group interactions, group seminar, power point presentations
Learning	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
Approach	
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA)
Types	Theory Total = 25 marks
	Test Papers/Assignments/Seminars
	Practical 15 marks
	B. Semester End examination
	Theory Total = 50 marks (Duration 2 hrs)
	Multiple Choice Questions $(1X \ 12) = 12$ marks
	Short Questions (6 out of 8) $X = 18$ marks
	Short essays (5 out of 7) X $4=20$ marks
	Practical 35 marks, record-10, examination 25 marks

- Nelson, D. L., & Cox, M. M. (2004). Lehninger Principles of Biochemistry (4th ed.). W. H. Freeman.
- 2. Voet, D., &Voet, J. G. (2004). Biochemistry [with Cdrom]. John Wiley & Sons Inc.
- 3. Zubay, G. L., Parson, W. W., & Vance, D. E. (1995). Principles Of Biochemistry. Mcgraw-Hill Book Company–Koga.
- 4. Berg, J. M., Tymoczko, J. L., &Stryer, L. (2007). Biochemistry (6th ed.). B.i. Publications Pvt. Ltd.
- 5. Rastogi. (2008). Biochemistry. Mcgraw Hill.

6. West, E. S., Todd, W. R., Mason, H. S., & van Bruggen, J. T. (1974). A Text Book of Biochemistry. Oxford and IBH Publishing Co.

SUGGESTED READINGS

- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (5th ed.). Garland Science. ISBN-10: 0815341059, ISBN-13: 978-0815341055
- Baker, T. A., Bell, S. P., & Watson, J. D. (2008). Molecular Biology Of The Gene 5/e (s). Dorling Kindersley (India) Pvt Ltd. ISBN: 8177581813, ISBN-13: 9788177581812, 978-8177581812
- 3. Lewin, B. (2008). Genes IX. J&b. ISBN: 0763752223, ISBN-13: 9780763752224, 978-0763752224

Programme								
Course Name	FUNCTION	FUNCTIONAL ZOOLOGY						
Type of Course	DSC B	DSC B						
Course Code	UC4DSCB	UC4DSCBTS203						
Course Level	200							
Course Summary	To impart of immunolog	-	vledge in p	hysiology, e	endocrinol	ogy and		
Semester	IV		Credits		4	Total		
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours		
Course Detuns	Approach <u>3</u> <u>1</u> <u>7</u>							
Pre-requisite, if any								

CO No.	Expected Course Outcome 21	Learning Domain*	PO No			
1	Explain the physiology of nutrition, respiration, circulation, excretion, and disorders.	А	1,2,3, 10			
2	Describe Muscle and Neuro physiology and neural disorders.	А	1,2,3, 10			
3	Explain Endocrine system and Hormonal disorders	U	1,2,3, 10			
4	Distinguish types of immunity, lymphoid organs, antigen-antibody reactions, auto-immune diseases, immunodeficiency diseases, hypersensitivity, and vaccines.	An	1,2,3, 10			
5	Test human blood groups, leukocytes, tonicity, lymphoid organs, estimate haemoglobin, monitor blood pressure, heart rate, and opercular movement in fish.	An, S	1,2, 3, 10			
*Reme	Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description				
1		Physiology	16			
	1.1	Nutrition: Introduction & Types, Nutritional requirements, nutritional disorders	1	1		
	1.2	Respiration: Transport of respiratory gases, Respiratory disturbances- Hypoxia, Hypercapnia, Physiological effect of smoking, carbon monoxide poisoning	3	1		
	1.3	Circulation: Composition and function of blood, Mechanism of blood clotting, ECG, Blood pressure, Arteriosclerosis, Haemophilia	3	1		
	1.4	Excretion: Structure of nephron, Urine formation and concentration, Kidney stone, dialysis	3	1		
	1.5	Neuro physiology: Structure of neuron, Nerve impulse production and propagation, synapse and synaptic transmission, Neurotransmitters, EEG, Neural disorder: Parkinson's & Alzheimer's diseases	3	2		
	1.6 Muscle Physiology: Types of muscles, Structure of striated muscle, Mechanism of muscle contraction, Cori cycle, Muscle fatigue, Oxygen debt, Rigor mortis					
2		Endocrinology	15			
	2.1	Endocrinology: Introduction to Endocrine system, Mechanism of hormone action, Endocrine glands, Hormonal disorders (brief account only).	15	3		
3.		Immunology	14			
	3.1	Introduction to immunology, types of immunity (innate & acquired immunity, Humoral & Cell mediated)	2	4		
	3.2	Structure of immunoglobulins, Classes of immunoglobulins, Types of antigen.	3	4		
	3.3	Lymphoid organs, T cells, B cells and other cells of immune system.	2	4		
	3.4	Antigen-Antibody reactions (Precipitation test, agglutination test, WIDAL, VDRL, ELISA), monoclonal antibodies	3	4		
	3.5	Auto immune diseases (Rheumatoid arthritis), Immune deficiency diseases (AIDS), Hypersensitivity	2	4		
	3.6	Vaccines (BCG, DPT, Polio, recombinant vaccines, DNA & mRNA vaccine)	2	4		
4		Practicals	30			

	1	Preparation of blood smear and identification of leukocytes	8	5
	2	Identification of human blood groups	3	5
	3	Study of lymphoid organs	3	5
	4	Demonstration of effect of tonicity on RBC	3	5
	5	Estimation of haemoglobin (Demonstration)	5	5
	6	Effect of temperature on opercular movement of fish	4	5
	7	Instruments-(Principle and Use)-Sphygmomanometer, Stethoscope (Students are expected to learn how to monitor blood pressure and heart rate)	4	5
5		Teacher Specific Module		

EVALUATION AND ASSESSMENT

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Tutorial, Videos
	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA): Theory Total = 25 Marks Quiz, Test Papers, seminar Practical Total = 15 Marks Lab performance, record, Other assignments
Assessment Types	B. End Semester Examination Theory Total = 50 Marks; Duration 1.5 hrs Short Essays 5 out of 7 x4=20 Marks; Short questions 10 out of 12 x2 =20 Marks Fill in the blanks 10 x1 =10 Marks
	Practical Total = 35 Marks, Duration - 2 hrs Record - 10 Marks, Examination - 25 Marks:
	 Spotter Identification: 1. Identification – lymphoid organs, instruments -6 marks 2. Practicals 2/4/5/6 -4 marks 3. Blood smear preparation and identification of leucocytes -15 marks

REFERENCES

- 1. Adelman, D. C., Casale, T. B., & Corren, J. (Eds.). (2002). Manual of allergy and immunology. Lippincott Williams & Wilkins..
- 2. Alberts, B. (2017). Molecular biology of the cell. Garland science
- 3. Ananthanarayan, R., & Jayaram Paniker, C. K. (2020). Textbook of Microbiology. Orient Longman Private Ltd.

- 4. Delves, P. J., et al. (2017). Roitt's Essential Immunology. John Wiley & Sons.
- 5. Doan, T., Melvold, R., & Waltenbaugh, C. (2005). Concise medical immunology. Lippincott Williams & Wilkins.
- 6. Janeway, Charles, et al. (2001) Immunobiology: the immune system in health and disease. Vol. 2. New York: Garland Pub., 2001.
- 7. Khonsary, S. A. (2017). "Guyton and Hall: Textbook of Medical Physiology." Surgical Neurology International, 8.
- 8. Kleine, B., & Rossmanith, W. G. (2016). Hormones and the Endocrine System. Cham: Springer International Publishing.
- 9. Larsen, P. R., et al. (2003). Williams Textbook of Endocrinology. Philadelphia: Saunders.
- 10. Loukas, M., et al. (2019). Gray's Clinical Photographic Dissector of the Human Body (2nd ed.). Elsevier Health Sciences.
- 11. Murphy, K., & Weaver, C. (2016). Janeway's immunobiology. Garland science.
- 12. Owen, J. A., Punt, J., & Stranford, S. A. (2013). Kuby Immunology (7th ed.). W.H. Freeman.
- 13. Parslow, T. G., Stites, D. P., Terr, A. I., & Imboden, J. B. (2001). Medical immunology. McGraw-Hill.
- 14. Paul, W. E. (2012). Fundamental immunology. Lippincott Williams & Wilkins.
- 15. Pommerville, J. C. (2012). Alcamo's Fundamentals of Microbiology: Body Systems. Jones & Bartlett Publishers.
- 16. Roitt, I. M., Brostoff, J., & Male, D. K. (2001). Immunology (6th ed.). Mosby.
- 17. Sompayrac, L. M. (2022). How the immune system works. John Wiley & Sons.

Programme							
Course Name	HUMAN RIGHTS AND GENDER EQUALITY						
Type of	VAC						
Course							
Course Code	UC4VACBTS200						
Course	200						
Level							
Course	The course aims to provid	de students	with a con	prehensive	understandi	ng of	
Summary	human rights issues and e	quip them	with the kn	owledge and	skills to ad	vocate	
	for human rights in their	-	-				
	empower students to becc promoting and protecting			0			
Semester	IV		Credits		3		
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Total	
Details						Hours	
		3	0	0	0	45	
Pre-	ES	t. in 1	921				
requisites, if		s	200				
any		9.18					
		90 0	110273				

СО		Learning			
No.	Expected Course Outcome	Domains	PO No		
		*			
1	To develop the real sense of Human rights – its concepts &	U,K	1,2,3,10		
	manifestations				
2	Developing a comprehensive understanding of human rights	K,U,A	1,2,5,6,7,10		
	principles, laws, and mechanisms				
3	Critical analysis of human rights issues, advocate for social	U, A, An	2,5,6,7,10		
	justice, and effectively communicate ideas and perspectives on				
	human rights violations.				
4.	Develop a critical understanding of the social construction of	U, A, An, E	2,5,6,7,10		
	gender and its impact on individuals and society.				
5.	Identify and critique systems of power and privilege that	A, An, E	2,5,6,7,10		
	perpetuate gender inequality				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),					
Interes	et (I) and Appreciation (Ap)				

Module	Units	Hrs	CO	
			45	No.
	1.1	Historical development of human rights	2	1
	1.2	Main concepts associated with Human Rights	2	1,2
	1.2	International human rights laws and treaties	2	1,2
1	1.3	Different categories of rights (civil, political, economic, social,	3	1
		and cultural)		
	2.1	Constitutional provisions related to	3	2
		Human rights		
2	2.2	Governments and non-governmental organizations in	3	2
		promoting and protecting human rights		
	2.3	Mechanisms for	4	2
		checking violations of human rights		
	2.4	National human right commission	1	2
	3.1	Conceptualizing Gender: Sex and Gender, Types of Gender.		
		Concepts in relation with Gender- Gender needs,	3	4
		Gender Roles, Gender Stereotyping, Gender Discrimination,		
		Gender Identity.		
3	3.2	Gender in India: Gender Status and gender disparity in		
		Education, Labour force participation Political participation,		
		Health.	3	4
		Gender and Media- Role of Media in constructing ideologies,		
		Gender sensitivity, Gender equality, Gender and Development		
	3.3	Gender based violence- Sexual abuse, Domestic Violence,	3	4,5
		Female infanticide, dowry death, workplace harassment.		
	3.4	Legal and Statutory Remediation, Remedies and Support	3	2
	3.5	Current human rights issues and challenges.	3	2,5
	3.6	Case studies and report writing	10	3,5
4		Teacher specific module		

COURSE CONTENT

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Lectures, presentations, videos, debate, group interaction		
Approach			
Assessment types	MODE OF ASSESSMENT		
	A. Continuous Comprehensive Assessment		
	Theory Total 25 Marks		
	Quiz/Test Papers/Seminar/Case studies and report writing		

B. End Semester Examination
Theory: Total - 50 Marks, Duration 1.5 hrs
Fill in the blanks -1x10=10 Marks
Short questions-(10 out of 12) x $2 = 20$
Marks Short Essays (5 out of 7) x $4 = 20$
Marks

- 1. Agarwal, H.O. (2018). Human Rights. CLP.
- 2. Agarwal, H.O. (2019). International Law and Human Rights. CLP.
- 3. Bhasin, K. (2000). Understanding gender. Kali for women, N. Delhi.
- 4. Chitnis, V., et al (1997). Human Rights and the Law: National and Global Perspective: Ketan Thakkar for Snow White Publications Pvt. Limited,
- 5. Deshpande, B.A. (2017). Human rights- Law and Practice. CLP.
- 6. Dharmadhikari, D.M. (2016). Human Values and Human Rights. Lexis Nexis.
- 7. Gupta, K.R. (2009). Gender: Problems and policies. New Delhi: Atlantic Publishers.
- 8. Jain, R. (2016) Text book on Human Rights Law and Practice. Lexis Nexis.
- 9. Kumar Sinha, M (2013). Implementation of Basic Human Rights. Lexis Nexis.
- 10. Mukherjee, M. (1992). Human Rights and gender issues. New Delhi: Institute of Social Sciences.
- 11. Pal, M. (2009). Gender and Discrimination: Health, Nutritional status and role of women in India. London: Oxford University Press.

Programme							
Course Name	BASIC MO	BASIC MOLECULAR TECHNIQUES					
Type of Course	SEC						
Course Code	UC4SECBT	UC4SECBTS200					
Course Level	200						
Course Summary	Participants will learn about DNA extraction, PCR, and gel						
	electrophoresis. The course focuses on troubleshooting common issues						
	and optimizing experimental protocols. By the end of the course,						
	participants will have a solid understanding of these techniques and be						
	able to apply them to their own research projects.						
Semester	IV		Cre	dits		3	Total
Course	Learning	Lecture		Tutorial	Practical	Others	Hours
Details	Approach						- 0
		3		0	0	0	60
Pre- requisites, if	None						
any							

CO		Learning	PO				
No.	Expected Course Outcome	Domains *	No				
1	To develop basic laboratory skills such as safety protocols, proper handling of equipment and chemicals, accurate measurement techniques, data analysis, and interpretation of results	U, A, An, S	1,2,3,10				
2.	To gain proficiency in various laboratory techniques such as DNA isolation, PCR, gel electrophoresis	U, A, An E,S	1,2,3,,9,10				
3.	To develop a strong understanding of molecular biology concepts, experimental design, data analysis, and interpretation	U,A An ,S					
4	To equip students with the practical skills and knowledge needed to excel in research	A, An E,C,S					
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction

Module	Units	Course description	Hrs 60	CO No.
		General laboratory Practices	15	
	1.1	General laboratory rules and procedures in a Molecular biology		1
		laboratory.		
	1.2	General Rules/Protocols for Lab Safety measures, Precaution and		1
		Safety in handling of chemicals, Laboratory tools, Glassware and		
		instruments.		

	1.3	Laboratory Star	dard Operating Procedures and Log book		1		
	1.5	maintenance.	land operating recourts and Log book		1		
1.	1. Instruments and Apparatus: pH meter, Spectrophotometer, UV						
1.	Transilluminator, water bath, weighing balance and micropipettes.						
	1.4		andard Solution and Buffers used in molecular		1		
	1.7	biology labs.	induite Solution and Burlers used in molecular		1		
	1.5		iques: moist heat and dry heat sterilization.		1		
	1.6				1		
	1.0	Storage facilities	of chemicals and reagents.		1		
			Isolation of DNA	20			
2.	2.1	Isolation of geno	mic DNA from bacteria.		2,3,4		
	2.2	Isolation of genor	mic DNA from plant tissue.		2,3,4		
	2.3	Isolation of plasm	nid DNA from bacterial cells.		2,3,4		
		Polymera	ase Chain Reaction and Agarose Gel	25			
			Electrophoresis				
3.	3.1	Polymerase chai	n reaction: Reagents of PCR, Preparation of		2,3,4		
		master mix, PCR	E				
	3.2	Preparation of A	garose gel, role of Gel loading dye and Ethidium		2,3,4		
		bromide, prepa	ration of TAE buffer, Visualization and				
		Interpretation of	gel				
4.		Teacher specific module					
		Clas	ssroom Procedure (Mode of transaction)				
Teaching	and Le	rning Lec	tures, presentations, videos, Experiential learning, has	nds or	n		
Approach	1	trair	ning				
		MO	DE OF ASSESSMENT				
Assessme	nt type	B. (B. Continuous Comprehensive Assessment Theory				
			Total 25 Marks				
			Quiz/Test Papers/Seminar/Viva				
		B. F	End Semester Examination				
			Theory: Total – 50 Marks, Duration 1.5 hrs				
			Fill in the blanks -1x10=10 Marks				
			Short questions- $(10 \text{ out of } 12) \ge 20 \text{ Marks}$				
	Short Essays 5 out of 7 x4 =20 Marks						

- 1. Innis, M. A., Gelfand, D. H., & Sninsky, J. J. (1990). PCR Protocols: A Guide to Methods and Applications. San Diego, CA: Academic Press.
- 2. Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 3. Thieman, W. J., & Palladino, M. A. (2011). Laboratory Techniques in Biotechnology.

Programme	BSc (Honours) Biologi	cal Sciences				
Course Name	DEVELOPMENTAL B	DEVELOPMENTAL BIOLOGY				
Type of	DSC A					
Course						
Course Code	UC5DSCBTS300					
Course	300					
Level						
Course	The course is designed t	o equip stud	ents in perce	eiving, under	rstanding, a	nd
Summary	Analyzing reproductive	and embryo	logical deve	elopmental p	processes.	
Semester	V		Credits		4	
CourseDetails	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours
		3	0	1	0	75
Pre- requisites,			· ·			
If any						

Est in 1921 COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PO No			
No.		Domains*				
1	Students will be able to understand the reproductive and	U/A	2,3,10			
	developmental events					
2	explain how developmental processes initiates and proceeds	Е	2,3,10			
3	To achieve a basic understanding of the experimental methods and	U	2,3,10			
	designs that can be used for future studies and research					
4	Discuss basic embryonic development	U	2,3,10			
5	Explore the Molecular and Genetic Basis of Development:	E	2,3,10			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),						
Interes	et (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description	Hrs.	СО
			45	No.
	1.1	Introduction: Definition, Scope of developmental biology, sub-	3	1
		divisions (descriptive,		
		Comparative, experimental and chemical), historical		
		perspectives, basic concepts and theories.		

1	1.2	 Reproductive Physiology: Gonads- anatomy of testis and ovary, spermatogenesis, oogenesis, gonadal hormones and their functions. Hormonal control of human reproduction - Female reproductive cycles (Estrous cycle, Menstrual cycle). Structure of mammalian sperm and egg, Pregnancy, parturition and lactation. Egg types: Classification of eggs based on the amount, distribution and position of yolk. Mosaic and regulative, cleidoic and noncleidoic eggs. Polarity and symmetry of egg. 	12	2
	2.1	Fertilization : Mechanism of fertilization- (Encounter of spermatozoa and Ova, Approach of the Spermatozoon to the Egg, Acrosome Reaction and Contact of Sperm and Ovum, Activation of Ovum, Migration of Pronuclei and Amphimixis,), Significance of fertilization, Polyspermy, Parthenogenesis - Different types and significance	5	2
2	2.2	Cleavage: Types, planes and patterns of cleavage, Cell lineage of Planaria. Influence of yolk on cleavage. Blastulation: Morula, blastula formation, types of blastula with examples Fate maps: Concept of fate maps, construction of fate maps (artificial and natural), structure of a typical chordate fate map. Significance of fate map. Gastrulation: Major events in gastrulation. Morphogenetic cell movements. Influence of yolk on gastrulation. Exogastrulation. Concept of germ layers and derivatives.	10	2

	3.1	Cell differentiation and gene action : Potency of embryonic cells (Totipotency, Pleuripotency, Unipotency of embryonic cells). Determination and differentiation in embryonic development, Gene	5	5
		action during development with reference to Drosophila (maternal effect genes), Zygotic genes.		
3	3.2	Organogenesis –vulva formation in Caenorhabditiselegans,eyelens induction,(BRIEF ACCOUNT)limb development andregeneration in vertebratesExperimentalExperimentalembryology:Spemann'sconstrictionexperiments,Organizers andembryonic Induction.Embryo transfer technology, cloning, stemcell research.Ethical issues.	10	4,5
	3.3	Prenatal diagnosis: Amniocentesis, Chorionic villi sampling, Ultra sound scanning, Foetoscopy, Maternal serum alpha-fetoprotein, Maternal serum beta-HCG.	5	3

	3.4	Embryology of Frog: Gametes, fertilization, cleavage,	10	4
		blastulation, , gastrulation,		
		neurulation, notogenesis. Differentiation of Mesoderm and		
		Endoderm, Development of		
		eye. Metamorphosis of frog, Hormonal and environmental		
		Control.		
4		PRACTICALS		
		1. Study of permanent slides of Frogembryology:		
		T.S. Blastula, T.S. Gastrula.	30	1,3
		2. Embryo transfer, cloning, Amniocentesis		
		3. Candling method.		
		4. Vital staining- demonstration		
		5. Calculate the gonado-somatic index of given fish		
		6. Male and female reproductive organs in cockroach		
5		Teachers specific Module		

Est. in 1921

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Classroom lectures
Approach	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,
	interactive Instruction:, Active co-operative learning, Seminar, Group
	Assignments Authentic learning, , Library work and Group discussion,
	Presentation by individual student/ Group representative
Assessment	MODE OF ASSESSMENT
Types	A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks
	Quiz/ Test Papers/ seminars /Peer Review
	Practical Total 15 marks
	Lab performance/Lab report/ Viva Voice
	B. End Semester Examination
	Theory Total 50 marks, Duration 1.5 hrs
	Fill in the blanks /MCQ-1x10=10 marks
	Short questions- $(10 \text{ out of } 12) \ge 20 \text{ marks}$
	Short Essays (5 out of 8) x $4 = 20$ marks
	Practicals Total 35 marks Duration- 2 hrs
	Record 10 marks, Examination 25 marks: spotter identification-
	5marks, viva -5 marks, Experiments/Dissection- 15 marks.

- 1. Agrawal, V., & Sharma, R. (2007). Developmental biology. S. Chand Publishing.
- 2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell (6th ed.). Garland Science.
- 3. Balinsky, B. I., & Fabian, B. C. (2012). An introduction to embryology (5th ed.). CBS Publishers & Distributors.
- 4. Bhatnagar, S. P., & Moitra, A. (1996). Developmental biology. Oxford University Press.
- 5. Datta, S. C. (2008). Developmental biology. New Age International Publishers.
- 6. Gilbert, S. F. (2010). Developmental biology (9th ed.). Sinauer Associates.
- 7. Gilbert, S. F., & Barresi, M. J. F. (2016). Developmental biology (11th ed.). Sinauer Associates.
- 8. Gupta, P. K. (2007). Elements of developmental biology. Rastogi Publications.
- 9. Hall, B. K. (1999). The neural crest in development and evolution. Springer.

Programme	BSc (Honours) Biologics	al Sciences				
Course Name	MOLECULAR BIOLOG	Y				
Type of	DSC A					
Course						
Course Code	UC5DSCBTS301					
Course	300					
Level						
Course	This course provides stud	lents with a	compreher	nsive underst	anding of the	principles
Summary	and processes that govern molecular level. They w biology research and how	ill also lea w these fin	rn about th dings can l	e latest adva be applied in	ncements in various fiel	molecular ds such as
	medicine, agriculture, an					
	have gained a strong fou			biology that	t will prepar	e them for
	further studies or careers	in the field	•		1	T
Semester	V	Cre	dits		4	Total
Course	Learning Approach	S Lecture	Tutorial	Practical	Others	Hours
Details		3	0	1	0	75
Pre- requisites, if	NO	300				
any	7/	10,532 522	a //			

CO	Expected Course Outcome	Learning	PO
No.		Domains*	No
1	To understand the basic principles of molecular biology and its	U, K I	2,3,10
	significance in the field of genetics and biotechnology.		
2	To acquire knowledge on various molecular mechanism involved	K, A, S	2,3,10
	in the regulation of gene expression in prokaryotes and eukaryotes.		
3	To develop critical thinking skills to analyze and interpret	A, An, S	2,3,10
	experimental data in molecular biology research.		
4	To acquire knowledge of current trends and advancements in	K, U	2,3,10
	molecular biology research		
5	To apply knowledge of molecular biology to real-world problems	A,An, E	2,3,9,10
	and challenges in various fields, such as medicine, agriculture, and		
	biotechnology		
*Reme	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Cr	eate (C), Skill (<i>S</i>),
Intere	st (I) and Appreciation (Ap)		

COURSE CONTENT Content for Classroom transactions (Units)

Module	Units	Course description	Hrs	CO
			45	No.
		Introduction to Molecular Biology-Genetic material	10	
	1.1	Miescher to Watson and Crick- historic perspective, Griffith's	2	1
1		and Avery's transformation experiments, Hershey-Chase,		
		bacteriophage experiment, Structure and types of DNA & RNA.		
		Modern concept of gene (Cistron, muton, recon, viral genes),		
		Split genes (introns and exons), Junk genes, Pseudogenes,		
		Overlapping genes, Transposons.		
	1.2	DNA Replication- Models of DNA Replication, Conservative,	4	1,2
		Semiconservative and discontinuous,		
		Steps in DNA replication (prokaryotes and Eukaryotes),		
		Enzymatic factors		
		involved, Modes of replication- theta, rolling circle, d-loop		
		replication, Est in 1921		
	1.3	DNA Repair mechanisms- Photolyase, Excision Repair- BER,	4	1,2
		NER. Mismatch repair, SOS repair, Recombination repair		
		systems		
		Process of transcription	8	
	2.1	Types of RNA (mRNA, tRNA, rRNA)	2	1
2	2.2	Process of transcription (prokaryotes and eukaryotes) promoters,	3	1,2
		Enhancers, RNA polymerases,		
	2.3	Post-transcriptional modifications-	3	1,2
		Polyadenylation, capping, splicing		
		Process of Translation and gene regulation and Nucleic acid -	27	
3		based technologies		
	3.1	Central Dogma of molecular biology and central dogma reverse,	4	1
		one gene- one enzyme hypothesis, One gene-one polypeptide		
		hypothesis Characteristics of genetic code, Contributions of Har		
		Gobind Khorana, Eukaryotic and prokaryotic		
		ribosomes, tRNAs, aminoacyl t-RNA synthetases,		
	3.2	Steps involved in translation (prokaryotes and eukaryotes), Post	5	4
		translational modification		
	3.3	Gene regulations: Prokaryotic(inducible & repressible	6	4
		systems) Operon concept -Lac operon		

		and Tryptophan operon, Brief account of Eukaryotic gene regulation.		
3	3.4	RNA interference, Antisense RNA, SiRNA, MicroRNA,	4	3,4,5
3	3.5	Riboswitches & their applications,	2	3,4,5

	3.6	Nucleic acid as therapeutic agent,	3	3,4,5
	3.7	Human genome project and its implications	3	3,4,5
4		PRACTICAL	30	-,.,-
	4.1	Introduction to Laboratory Techniques	4	
		Safety guidelines and laboratory protocols and Aseptic		
		techniques and proper handling of		
		materials, Preparation of solutions for Molecular Biology		
		experiments		
	4.2	Extraction and Separation Experiments	16	4
		Isolation of chromosomal DNA from bacterial cells, Isolation of		
		RNA, Determination of Purity of DNA using UV-Visible		
		spectrophotometer (A260/ A280measurement), Separation of		
		DNA and RNA by agarose gel electrophoresis, Extraction of		
		protein from tissues, Separation of protein by SDS- PAGE		
	4.3	Cloning and Plasmid Manipulation	10	4
		Isolation of Plasmid, Restriction enzyme digestion, Ligation		
		reactions, Transformation of bacterial cells with recombinant		
		plasmids Colony selection and screening		
5		Teacher specific module		

I I	
Teaching and	Classroom Procedure (Mode of transaction)
Learning	Lecture, group interaction, seminar, presentations, Experiential learning,
Approach	Teaching aids like photographs, models, videos related to the topic can be used
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA)
Types	Theory Total=25 marks
	Quiz/ Test Papers/ seminars/Viva
	Practical Total 15 marks
	Lab performance/ record
	B. End Semester Examination
	Theory Total 50 marks, Duration 1.5 hrs
	Fill in the blanks -1x10=10 marks
	Short questions- $(10 \text{ out of } 12) \ge 2 = 20 \text{ marks Short}$
	Essays (5 out of 7) x $4 = 20$ marks
	Practicals Total 35 marks Duration- 2 hrs Record 10
	marks,
	Examination 25 marks Performance
	of experiment 20 marks Viva-5 marks

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell (6th ed.). New York, NY: Garland Science.
- 2. Allison, A. C. (2015). Fundamental Molecular Biology. Wiley.
- 3. Calladine, C. R., Drew, H. R., Luisi, B. F., & Travers, A. (2004). Understanding DNA. Elsevier.
- 4. Cox, M. M., Nelson, D. L., & Lehninger, A. L. (2007). Molecular Biology: Principles and Practice. Freeman.
- 5. Freidfelder, D. (2006). Molecular Biology. Narosa.
- 6. Harwood, A. J. (Ed.). (1996). Methods in Molecular Biology, Vol. 58: Basic DNA and RNA protocols. Humana Press.
- 7. Hartwell, L. H., Hood, L., Goldberg, M. L., Reynolds, A. E., & Silver, L. M. (2011). Genetics: From Genes to Genome. McGraw-Hill.
- 8. Lewin, B. (2004). Genes X. John Wiley.
- 9. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular Cell Biology. Scientific American Books.
- 10. Micklos, D. A., Freyer, G. A., & Crotty, D. A. (2006). DNA Science. Cold Spring Harbor.
- 11. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual.
- 12. Tropp, B. E. (2011). Molecular Biology: Genes to Proteins. Jones and Bartlett.
- 13. Walker, J. M., & Gringold, E. B. (1994). Molecular Biology and Biotechnology. Panima.
- Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). Molecular Biology of the Gene. Benjamin/Cummings.
- 15. Weaver, R. F. (2011). Molecular biology (5th ed.). New York, NY: McGraw-Hill.

Programme	BSc (Honours) Biological Sciences						
Course Name	GENETICS						
Type of Course	DSC A						
Course Code	UC5DSCBTS302						
Course	300						
Level							
Course	Introduce students to the concepts of Genetics and to develop deep understanding						
Summary	on genes and genetic vari	on genes and genetic variation for shaping population structure.					
Semester	V		Credits		4	Total	
	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Course							
Details		4	0	0	0	60	
Pre-	None	st. in 1	1921		I	I	
requisites, if any		N					

CO	Expected Course Outcome	Learning	PO				
No.		Domains	No				
		*					
1	Develop a deep understanding of the fundamental concepts and theories	K,U	2,3,10				
	of Genetics						
2	To develop critical thinking, skill and research aptitudes in Genetics	K,U	2,3,10				
3	To emphasize the central role of genes and their inheritance in the life of	U, An, E					
	all organisms						
4	Analyze the role of genetics in shaping population structure and	An, E					
	dynamics.						
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),						
Intere	st (I) and Appreciation (Ap)						

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			60	No.
	1.1	Mendelian Genetics:	16	
		Mendel's experiment - Monohybrid Cross, Dihybrid Cross,		
		Mendel's Laws of heredity, Test Cross, Back Cross and		
		Reciprocal Cross. Chromosome Theory of Inheritance	4	1
	1.2	Interaction of genes:		
		Allelic interactions: Incomplete Dominance and Co- Dominance		
		with examples		
		Lethal gene: Dominant and recessive lethal gene with examples	6	1
		Non-Allelic interaction: Complementary,		
		Supplementary gene interaction with examples Epistasis -		
		dominant, and recessive with examples, Polygenes with an example		
		Pleiotropism, Multiple alleles with examples		
	1.3	Linkage and Recombination: 1971		
1		Linkage and recombination of genes based on Morgan's work in		
		Drosophila, Linked genes, Linkage groups, chromosome theory		
		of linkage, types of linkage, Recombination, cross over	6	1
		value, Chromosome mapping, Two factor		
		cross and three factor cross in Drosophila.		
		Mechanisms of sex determination:	9	
	2.1	XX-XY mechanism of sex determination,, Species with	5	
		heterogametic females, The Y-chromosome and sex determination		3
2		in mammals, Sex determination in Drosophila(Genic balance		
		theory), Intersex in Drosophila, Haplodiploidy,		
		Hormonal and Environmental influence on sex determination, Barr		
		body and Lyon's hypothesis.		
	2.2	Characteristics of sex linked inheritance, X linked traits and Y		1
		linked traits in humans, Sex limited gene expression, Sex	4	3
		influenced dominance.		
3		Extra chromosomal Inheritance and Mutation	9	1
	3.1	Criteria for extra nuclear inheritance, cytoplasmic organelles		1
		containing DNA, Cytoplasmic male sterility in plants	3	1

	3.2	Types of mutation -Somatic and germinal, Chromosome structural		
		changes-Deletion, Duplication, Inversion and Translocation,		
		Chromosome Numerical changes, Molecular basis of gene mutation,		
		Induced mutations and physical mutagens, significance of mutations	6	1,2
		Chromosomal disorders and Population Genetics and	26	
		experiments		
	4.1	Aneuploidy and Non-disjunction, Autosomal abnormalities		
		-Down's syndrome, Cry du chat syndrome, Sex chromosomal		
		abnormalities-Klinefelter's syndrome, Turner's syndrome, Autosomal	5	3
		gene disorder-Sickle cell anaemia, Inborn errors of metabolism-		
		Phenylketonuria, Alkaptonuria, Albinism, Multifactorial disorders-Cleft		
		lip and cleft palate		
	4.2	Genetic variation, Allele frequencies, Hardy-Weinberg method,		
		Inbreeding, Out breeding, Changes in allele frequencies, Genetic drift.	6	4
	4.3	Experiential learning		
4		Experiments on monohybrid, dihybrid cross, test cross, and reciprocal	15	2
		cross, Est. in 1921		
		Experiments on epistatic interactions		
		Determination of linkage and cross over analysis (two factor cross)		
		Hardy Weinberg Law for calculation of gene frequency Sexing in		
		Drosophila		
		Pedigree Analysis		
		Karyotype analysis		
5		Teacher specific module		
	1		1	1

Teaching &	Classroom Procedure (Mode of transaction)
Learning	ICT Enabled Learning, Tutorial, Lecturing, Seminars
Approach	
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
Assessment Types	Theory Total=30marks
	Quiz/ Test Papers/ Seminar/ Viva

Theory Total 70 marks, Duration 2 hrs
Multiple Choice Questions $-10 \ge 10$ Marks
Short questions-(10 out of 12) x $3 = 30$ Marks,
Short Essay (6 out of 8) x $5 = 30$ Marks,

- 1. Gardner, E.J., Simmons, M.J., & Snustad, D.P. (2009). Genetics: Principles and Analysis. Wiley.
- 2. Griffiths, A. J., Miller, J. H., Suzuki, D. T., Lewontin, R. C., & Gelbart, W. M. (2000). An Introduction to Genetic Analysis (7th ed.). New York, NY: W. H. Freeman.
- 3. Lewin, B. (2017). Genes XII. Jones and Bartlett Publishers.
- 4. Pierce, B. A. (2013). Genetics: A conceptual approach (5th ed.). New York, NY: W. H. Freeman.
- 5. Russell, P. J. (2011). iGenetics: A Mendelian approach. San Francisco, CA: Pearson Education.
- 6. Singh, B.D. (2019). Fundamentals of Genetics. Kalyani Publishers.
- 7. Snustad, D. P., & Simmons, M. J. (2012). Principles of genetics. Hoboken, NJ: John Wiley & Sons.

Programme	BSc (Honours) Biological Sciences						
Course Name	IMMUNOLOGY						
Type of	DSE						
Course							
Course Code	UC5DSEBTS300						
Course	300						
Level							
Course	The course focuses on how the immune system functions to protect the body from						
Summary	infection and disease. It also highlights how the system is naturally or artificially					artificially	
	perturbed in clinical cor	nditions, su	uch as imm	unodeficien	cy, autoimn	nunity and	
	hypersensitivity condition	ons as wel	l as latest	advances in	n immunoth	erapy and	
	vaccine development.						
Semester	V		Credits		4	Total	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Details		4	0	0	0	60	
Pre-requisites,	E	st. in	1021				
if any		5t. III	1721				

CO No.	Expected Course Outcome	Learning Domains	PO No
		*	
1	Understand basic functioning of immune system	U	
2	Instill knowledge about organs and cells of immune system	U	
3	Provide knowledge on essential features of antigens and antibodies	K	
4	Apply knowledge in disease diagnosis through serological tests	А	
5	Acquire a broad understanding of immune system malfunctioning.	U	
6	Create basic knowledge about new approaches to vaccine production and cancer immunotherapies	U	
	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create est (I) and Appreciation (Ap)	e (C),Skill (S),	

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 60	CO No.
	1	Immune system	11	
	1.1	Introduction, historical background and scope of Immunology	2	1
	1.2	Primary lymphoid organs	2	1,2

	1.3	Secondary lymphoid organs	2	1,2
	1.4	Cells of immune system	3	1,2
1	1.5	B and T cell maturation	2	1,2
	2.	Infection and Immunity	14	
	2.1	Types and source of infection	2	1
	2.2	Immunity : Innate vs Adaptive	2	1
	2.3	Innate immunity: Innate immune mechanisms	3	1
	2.4	Acquired immunity : Active vs passive immunity	2	1
2	2.5	Immune responses : Humoral and cell mediated immune responses	2	1
	2.6	B cell activation	2	1
	2.7	T cell activation	2	1
	3	Antigens & Antibody	18	
	3.1	Antigens -types	2	3
	3.2	Essential features of antigenicity, B cell and Tcell epitopes	2	3
	3.3	MHC, Antigen processing and presentation	2	1
	3.4	Antibody- Basic structure and classes	3	3
3	3.5	Generation of Antibody diversity	3	3
	3.5	Monoclonal Antibodies: Hybridoma technology	2	3
	3.6	Antigen Antibody reactions-Serological tests	4	4
			•	

	4	Clinical Immunology	17	
	4.1	Hypersensitivity – Immediate and delayed reactions, Clinical types of hypersensitivity- Combs classification	3	5
	4.2	Auto immunity, Mechanisms of autoimmunization, Types of autoimmune disorders	3	5
4	4.3	Immunodeficiency diseases Primary & Secondary immunodeficiency disorders	3	5
	4.4	Tumor immunology, Tumor antigens ,Immune response in malignancy, Cancer Immunotherapies	3	5,6
	4.5	Immune hematology	2	5
	4.6	Vaccines: Types, new approaches in vaccine development	3	6
5		Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)
&	 Classroom lectures
Learning	Power point presentations
Approach	 Video presentations
	 Article and general reviews
	Seminars & group discussions
	Assignments

	MODE OF ASSESSMENT						
	A. Continuous Comprehensive Assessment (CCA)						
	Theory Total=30marks						
	Quiz/Test Papers/ Seminar/Assignment/Viva/Take home tests						
Assessment	B. End Semester examination						
TypesTheory Total 70 marks, Duration 2 hrs Multiple							
	Choice Questions $-(10 \text{ x } 1) = 10$ Marks Short						
	questions-(10 out of 12) x $3 = 30$ Marks, Short Essays						
	(6 out of 8) x $5 = 30$ Marks						

- 1. Ananthanarayanan, R & Panicker, C(2007). Text book of Microbiology. Orient Longman.
- 2. Chappel, H & Haeney, M. Clinical Immunology. Wiley-Blackwell.
- 3. Flower,D.(2007). Immunoinformatics predicting Immunogenicity in Silico. Humana Press.
- 4. Janeway, C.& Travers, P.(2001) Immunobiology. Garland Science.
- 5. Kimball ,J.(2008). Introduction to immunology. Macmillan.
- 6. Kindt, T.& Kuby,J (2016).Immunology. W.H,Freeman.

Programme	BSc (Honours) Biological Sciences					
Course Name	INTRODUCTION OF FO	INTRODUCTION OF FORENSIC BIOLOGY				
Type of	DSE	DSE				
Course						
Course Code	UC5DSEBTS301	JC5DSEBTS301				
Course	300					
Level						
Course	The program aims to provi	de students	with a com	prehensive	understandi	ng of the
Summary	forensic science discipline	, enabling	them to app	ly scientific	principles a	ind
	techniques to solve crimes	and contri	bute to the	justice syste	m.	
Semester	V		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		4	0	0	0	60
Pre-						·
requisites, if						
any	E	st. in	1921			

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Solid understanding of forensic science principles	K, U	2,3,10
2	Proficiency in forensic laboratory techniques	U, A, S	2,3,10
3	Expertise in analyzing and interpreting evidence	An, E	2,3,10
4	Knowledge of legal and ethical considerations	U, K, A	2,3,7,10
5	Research and analytical skills	S, U, An	2,3,9,10

Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO
			60	No.
		Forensic Biology		
	1.1	Overview of the field, its history, and its importance in criminal	3	1
1		investigations.		
	1.2	Forensic biology-Analysis of biological evidence such as DNA,	4	1,2
		blood, and other bodily fluids		

	1.3	Biological techniques- DNA profiling, serology, and the	5	2,3,5			
		interpretation of biological evidence in					
		criminal investigations					
2		Forensic Chemistry					
	2.1	Forensic Chemistry- analysis and identification of chemical	3	2,3			
		substances found at crime scenes					
	2.2	Analytical techniques, including spectroscopy, chromatography, and					
		mass spectrometry, and how	6	2,3,5			
		they are used to identify drugs, explosives, and other chemical					
		compounds.					
		Forensic Toxicology					
	3.1	Analysis of drugs and toxins in biological samples and their impact	3	2,3			
3		on criminal investigations.					
	3.2	techniques for drug identification and interpretation of toxicological	3	2,3,5			
		findings					
	3.3	The effects of drugs on the human body.	3	1,3			
		Forensic Anthropology					
	3.4	Study of human skeletal remains and their significance in	3	1,2			
		criminal investigations					
	3.5	Techniques for estimating age, sex, and stature from skeletal remains	3	2,3,5			
4		Legal and Ethical Issues in Forensic Science:					
	4.1	the legal and ethical considerations that are relevant to forensic	4	1,4			
		science practice					
	4.2						
		and the ethical responsibilities of forensic scientists.					
5		Teacher Specific Module		1			
		M SINLL MINE					

	Classroom Procedure (Mode of transaction)					
Teaching	Lectures, group interactions, group seminar, power point presentations					
and	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources					
Learning						
Approach						
	MODE OF ASSESSMENT					
Assessment	A. Continuous Comprehensive Assessment (CCA)					
Types	Theory Total = 30 marks					
	Test Papers/Assignments/Seminars					
	B. Semester End examination					
	Theory Total = 70 marks (Duration 2 hrs)					
	Multiple Choice Questions $(10 \text{ X } 1) = 10 \text{ marks}$					
	Short Questions (10 out of 12) X $3 = 30$ marks					
	Short essays (6 out of 8) X $5 = 30$ marks					

- 1. Saferstein, R. (2018). Forensic Science: From the Crime Scene to the Crime Lab (4th ed.). Pearson.
- **2.** Fisher, B. A. J., & Fisher, D. R. (2018). Techniques of Crime Scene Investigation (9th ed.). CRC Press.
- **3.** Butler, J. M. (2019). Advanced Topics in Forensic DNA Typing: Methodology. Academic Press.
- 4. Levine, B. (2019). Principles of Forensic Toxicology (5th ed.). American Association for Clinical Chemistry.
- 5. Byers, S. N. (2018). Introduction to Forensic Anthropology (5th ed.). Routledge.
- 6. Turvey, B. E. (2017). Forensic Psychology (2nd ed.). Academic Press.
- 7. Houck, M. M., & Siegel, J. A. (Eds.). (2014). Fundamentals of Forensic Science (3rd ed.). Academic Press.
- 8. Saferstein, R. (2018). Criminalistics: An Introduction to Forensic Science (12th ed.). Pearson.
- 9. Lee, H. C., & Gaensslen, R. E. (2013). Advances in Fingerprint Technology (3rd ed.). CRC Press.
- 10. James, S. H., & Nordby, J. J. (2018). Forensic Science: An Introduction to Scientific and Investigative Techniques (5th ed.). CRC Press.
- 11. Stimson, G. W. (2017). Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers (2nd ed.). CRC Press.
- Ramsland, K. A. (2019). Forensic Investigation: Methods from Experts (2nd ed.). CRC Press.
- 13. Bell, S., & Fisher, B. A. J. (2017). Criminalistics: An introduction to forensic science. CRC Press.
- 14. Black, M. (2019). Forensic science: Modern methods of solving crimes. Amber Books.
- 15. Siegel, J. A., Saukko, P. J., & Knupfer, G. C. (2015). Encyclopedia of forensic sciences (2nd ed.). Academic Press.

SUGGESTED READINGS

- 1. Brown, M. K., & Williams, L. G. (2019). Advancements in Fingerprint Analysis Techniques: A Comparative Study. Forensic Science Review, 56(2), 87-101.
- 2. Baker, L. C., & Wilson, E. P. (2018). Forensic Odontology: Bite Mark Analysis and Its Reliability. Journal of Forensic Dentistry, 44(3), 143-157.
- 3. Butler, J.M. (2006). "Advances in Forensic DNA Analysis: Implications for Population Genetics"
- 4. Drummer, O.H. (2014). "Forensic Toxicology: Current Trends and Future Perspectives"
- 5. Garcia, R. S., & Martinez, C. D. (2020). The Use of Microscopic Hair Analysis in Forensic Investigations. Journal of Criminalistics, 38(4), 201-215.
- 6. Gonzalez, M. H., & Hernandez, J. R. (2019). Forensic Entomology: Current Trends and Future Directions. Journal of Forensic Entomology, 35(2), 98-112.
- 7. Kocsis, R.N. (2006). "Psychological Profiling in Forensic Investigations: An Overview"
- 8. Lewis, A. M., & Campbell, R. J. (2017). The Role of Forensic Psychology in Criminal Profiling. Journal of Forensic Psychology, 39(1), 12-27.

- Patel, S. R., & Thomas, R. M. (2019). Forensic Anthropology: Techniques for Estimating Age and Sex from Skeletal Remains. Journal of Forensic Anthropology, 31(2), 75-89.
- 10. Roberts, E. L., & Collins, T. R. (2020). Forensic Toxicology: Advances in Drug Screening and Interpretation. Journal of Analytical Toxicology, 47(4), 230-245.
- 11. Smith, J. D., & Johnson, A. B. (2018). The Role of DNA Analysis in Solving Cold Cases. Journal of Forensic Science, 42(3), 123-136.
- 12. Thompson, P. H., & Davis, K. L. (2017). Digital Forensics: Challenges and Opportunities in the Cybercrime Era. Journal of Forensic Investigations, 25(1), 45-58.
- 13. Wilson, G. A., & Anderson, L. M. (2018). Ballistics Analysis: A Comprehensive Review of Methods and Tools. Forensic Science International, 145(3), 167-182.

Programme	BSc (Honours) Biological Sciences						
Course Name	EVOLUTION AND ETHOLOGY						
Type of	DSE						
Course							
Course Code	UC5DSEBTS302						
Course	300	300					
Level							
Course	Introduce students to th	e basic con	ncepts of E	Evolution and	l Genetics a	nd to develop	
Summary	deep understanding on	molecula	ar mechani	isms, driving	g genetic v	variation and	
	adaptation for shaping p	opulation s	structure an	d dynamics l	eading		
	to evolution						
Semester	V		Credits		4	Total	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Details		4	0	0	0	60	
Pre-			•	•	L	-	
requisites, if	_		1001				
any	E	st. in	1921				

CO		Learning	PO				
No.	Expected Course Outcome	Domains*	No				
1	Develop a deep understanding of the fundamental concepts and theories	K,U	2,3,10				
	of evolution and Ethology						
2	Explore the genetic basis of evolutionary processes, including	K,U	2,3,10				
	natural selection, genetic drift, gene flow, and						
	mutation.						
3	Understand the principles and history of ethology.	U	2,3,10				
4	Learn about various behaviors such as foraging, mating,	An	2,3,10				
	communication, and social interactions.						
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),						
Intere	est (I) and Appreciation (Ap)						

COURSE CONTENT

Module Units		Course description	Hrs 60	CO No.
	1. 1	Concepts in Evolution: Theories of evolution: theory of spontaneous generation (Abiogenesis or Autogenesis), Special creation, Biogenesis, Endosymbiosis, Evolution of Prokaryotes, origin of eukaryotic cells, origin of photosynthesis and aerobic metabolism.	5	3
1	1. 2	Chemical evolution - Haldane and Oparin theory, Miller-Urey experiment; Direct evidences of evolution – Recapitulation	10	1
	1. 3	Molecular Evolution - Neutral theory of molecular evolution; Phylogenetic relationships- Homology; Homologous	5	1,3
	2. 1	Population genetics: Gene pool, gene frequency, Hardy- Weinberg Law, rate of change in gene frequency through natural selection, migration and random genetic drift, Founder effect and Bottle check phenomenon	5	2
2	2. 2		10	3,4
3	3.	Ethology: Concept and classification: Patterns and Mechanisms in Animal Behaviour		
		Introduction and Patterns of behavior History (brief), scope of ethology. (a) Innate behaviour: Orientation-taxes/kinesis, simple reflexes, instincts, motivation.(b) Learned behaviour: Habituation, conditioned reflex, trial and error learning; latent learning, imprinting, insight learning, memory and learning.		5 3

	3.2	Neural mechanism in behavior		
		Role of hypothalamus in thirst and feeding; role of cerebral cortex in		
		emotional behavior; mammalian limbic system and control of behavior		
		(brief account). Communication and Signaling Types of animal	10	4
		communication: visual, auditory, chemical, tactile.		
		Evolution and function of signaling.		
		Honest vs. deceptive signaling.		
	3.3	Biological rhythm and Sociobiology: Biological clocks/rhythms		
		Photoperiodism, circadian rhythm; migration, orientation,		
		navigation and homing;	5	3
		diapause, hibernation and aestivation (brief		
		account)		
	3.4	Sociobiology		
		Social groups in termites and elephants; Chemical communication:		
		classification		
		And significance of pheromones (mention human pheromones also).	5	3
4		Teacher Specific Module		
	1	Est in 1921	<u> </u>	I

	ESL. III 1721				
Teaching	Classroom Procedure (Mode of transaction)				
and	Classroom lectures, Video presentations, Seminars Group				
Learning	discussions, Assignments				
Approach					
	MODE OF ASSESSMENT				
Assessment	A. Continuous Comprehensive Assessment (CCA)				
Types	Theory Total = 30 marks				
	Quiz/ Test Papers/ seminars				
	B. End Semester examination				
	Theory Total 70 marks, Duration 2 hrs				
	Multiple choice questions- $10 \ge 10$ Marks,				
	Short questions-(10 out of 12) x $3 = 30$ Marks Short				
	Essays (6 out of 8) x $5 = 30$ Marks				

- 1. Agarwal, V. K. (2009). Animal behaviour. S. Chand and Company Pvt. Ltd.
- 2. Arthur, W. (2011). Evolution: A developmental approach. Wiley-Blackwell.
- 3. Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2007). Evolution. Cold Spring Harbor Laboratory Press.
- 4. Bonner, J. T. (1980). The evolution of culture in animals. Princeton University Press.
- 5. Camilo, J. C., & Francisco, J. (2007). Human evolution: Trails from the past. Oxford University Press.
- 6. Campbell, B. G. (2009). Human evolution. Transaction Publishers.
- 7. Chattopadhyay, S. (n.d.). Life, origin, evolution and adaptation. Books and Allied (P) Ltd.
- 8. Dan, G., & Li, W. H. (2000). Fundamentals of molecular evolution (2nd ed.). Sinauer Associates Inc.
- 9. Dawkins, M. S. (1995). Unravelling animal behaviour. Longman.
- 10. Dunbar, R. (1988). Primate social systems. Croom Helm.
- 11. Gould, S. J. (2002). The structure of evolutionary theory. Harvard University Press.
- 12. Gundevia, J. S., & Singh, H. G. (1996). A text book of animal behaviour. S. Chand and Company Pvt. Ltd.
- 13. Hall, B. K., & Hallgrimsson, B. (2008). Evolution (4th ed.). Jones and Bartlett Publishers.
- 14. Hartel, D., & Jones, E. (2009). Lewin's Genes X (10th ed.). Jones and Bartlett.
- 15. Jha, A. P. (2000). Genes and evolution. Macmillan Publishers India.
- 16. Kimura, M. (n.d.). The neutral theory of molecular evolution. Cambridge University Press.
- 17. Lindell, B. (2016). An introduction to molecular evolution and phylogenetics (3rd ed.).
- 18. McFarland, D. (1999). Animal behaviour. Pearson Education Ltd.
- 19. Strickberger, M. W. (2000). Evolution. Jones and Bartlett.

Programme	BSc (Honours) Biological Sciences						
Course Name	NEUROBIOCHEMISTR	Y					
Type of	DSE						
Course							
Course Code	UC5DSEBTS303						
Course	300						
Level							
CourseSum	The course introduces fundamental biochemical molecules, concepts and processes						
mary	involved in the control and coordination of the brain. The role of neurotransmitters						
	in communication betwe	en neuron	s, learning	and memor	ry, regulating	g mood and	
	behavior, the impact of s	tress, the i	mportance	of sleep for	overall healt	h and well-	
	being.						
Semester	VI		Credits		4	Total	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Details		4	0	0	0	60	
Pre-	None				•		
requisites,	Est. in 1921						
ifany		<u>.</u>	1741				
		355	. the los				

CO		Learning	PO
No.	Expected Course Outcome	Domains*	No
1	To gain an understanding of the biochemical processes underlying	U,K	2,3,10
	neural function and communication.		
2	To understand the role of various neurotransmitters and receptors in	U	2,3,10
	the nervous system.		
3	To analyse the impact of neurotransmitter imbalances on	U,A	2,3,10
	neurological disorders and diseases.		
4	To acquire knowledge in neurobiochemistry and understanding its	U	2,3,10
	effect on physiology and homeostasis		
5	To identify and learn biochemical concepts related to neurobiology	A,S	2,3,9,10
	affecting life and its overall well being		
*Reme	nber(K),Understand(U),Apply(A), Analyse(An),Evaluate(E),Create(C),Su	kill(S),	
Interes	t(I)and Appreciation(Ap)		

COURSE CONTENT

Module	Units	Content for Classroom transaction (Units) Course description	Hrs	СО
		•	60	No.
	1.1	The nervous system; functions of the nervous system, Central,		
		Peripheral and Autonomic Nervous System. Cells of the nervous		
		system- neurons, structure, classification and properties of	5	1
		neurons; Synapses- types and properties.		
		Mechanism of conduction of nerve impulses.		
	1.2	Neurotransmitters- Role of neurotransmitters in the transmission	5	1
		of impulses, mechanism of action.		
	1.3	Neurotransmitters Chemistry, Structure and Functions.		
1		ANS-Sympathetic and Parasympathetic neurotransmitters-		
		Ach, Adrenaline, Noradrenaline. Neurotransmitters of CNS		
		Serotonin, Histamine, Glutamine, Aspartate, GABA, Glycine,	5	1,2
		Nitric oxide, Substance P		
	2.1	EmotionsNeural centres of emotions; Hypothalamus and limbic	5	2,3
		system. Role of CNS in emotions 1921		
	2.2	Stress and health. Phases and types of stress. Hormonal, anatomical		
		and physiological indicators of stress	5	2,3
		Regulation of stress HPA axis Fight o Flight response		
2	2.3	Understanding the biochemistry and managing stress.	5	3
	3.1	Sleep and wakefulnessTypes of sleep and its significance. Brain		
		areas involved in sleep. Factors affecting sleep.	5	3
		Sleep disorders, Circadian rhythm, EEG		
	3.2	The concept of learning and memory. Role of hippocampus and		
		its role in consolidation of memory. Neurotransmitters involved		
		in learning and memory. Neurodegenerative	5	
		disorders- Parkinson's, Alzhemer's disorders, ALS, Senile		3
3	-	dementia etc		
	3.3	Introduction to brain chemistry		
		Brain barriers; blood brain barrier and its significance		
		CSF; composition and functions.		
		Brain chemistry, psychiatric drugs and mental illness	5	3
	4.1	An overview of the endocrine system. Hypothalamus and		
		pituitary, thyroid, adrenal glands, endocrine control of	5	4
		growth, sex		

		hormones and pancreatic hormones, Feedback mechanism of		
		hormone regulation with examples		
		HPA axis and HPT axis		
4	4.2	Impact of sex hormones and role of neurotransmitters	5	
		in sexual behavior, fear, thirst and hunger		5

	4.3	Psychoneuroimmunology		
		Connections between nervous system and immune functions.		
		Influence of stress on immune function. Placebo effect	5	
		Biofeedback, mind body technique and meditation		5
5		Teacher Specific Module		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Lectures, group interactions, group seminar, power point presentations, chart
Approach	making
	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
	MODE OF ASSESSMENT
Assessment Types	A. Continuous Comprehensive Assessment (CCA)
	Theory Total = 30 marks
	Test Papers/Assignments/Seminars
	B. End Semester examination
	Theory Total = 70 marks (Duration 2 hrs)
	Multiple Choice Questions $(1X \ 10) = 10$ marks
	Short Questions (10 out of 12) $X = 30$ marks
	Short essays (6 out of 8) $X = 30$ marks

- 1. Agra noff, B. W., Albers, W., Fisher, S. K., Siegel, G. J., &Uhler, M. D. (Eds.). (1999).Basic Neurochemistry- Molecular, cellular and medical aspects.
- 2. Guyton, A. C., & Hall, J. E. (2006). Textbook of Medical Physiology.
- 3. Hadley, M. E. (2000). Endocrinology.
- 4. Matthews, G. G. (2007). Neurobiology: Molecules, cells and systems.
- 5. Nicholls, J. G., Martin, A. R., Wallace, B. G., & Fuchs, P. A. (2012). From Neuron to Brain.
- 6. Widmaier, E. P., Raff, H., &Strang, K. T. (2012). Vander's Human Physiology-The mechanism of body function.
- 7. West, J. B. (2012). Physiological basis of Medical Practice.

Suggested Readings

- 1. Delcomyn, F. (1998). Foundations of Neurobiology. 1st edition. W. H. Freeman and Company.
- 2. Ganong, William F. (Year). Review of Medical Physiology.
- 3. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., Mooney, R., Platt, M. L., & White, L. E. (2018). Neuroscience. 6th edition. Sinauer.
- 4. Zupanc, G. K. H. (2010). Behavioral Neurobiology: An Integrative Approach. 2nd edition. Oxford University Press

Programme	BSc (Honours) Biological Sciences						
Course Name	ENTREPRENEURSHI	ENTREPRENEURSHIP IN BIOCHEMISTRY					
Type of	SEC	EC					
Course							
Course Code	UC5SECBTS300	UC5SECBTS300					
Course Level	300	300					
Course	The foundational concept	ots of bioc	hemical en	trepreneurship	o, exploring	g the	
Summary	transformative power of	technologi	cal innovati	ons.			
Semester			Credits		3	Total	
Course		Lecture	Tutorial	Practical	Others	Hours	
Details	Learning Approach	3	0	0	0	45	
Pre-	Nil						
requisites, if							
any							

CO	Expected Course Outcome	Learning	PO
No.		Domains *	No
1	Acquire a comprehensive understanding of nutrition and herbal food supplements, emphasizing their benefits for daily nutrition and preventive care. Recognizing the global impact of dietary habits, participants will be equipped to apply this knowledge practically, selecting and utilizing herbal supplements for daily health benefits.	U	2, 3, 4, 6,9, 10
2	Participants will gain a profound understanding of the nutraceutical business landscape, encompassing dietary supplements, functional foods, and phytochemicals. They will navigate the intricacies of product classifications, comprehend various nutraceutical ingredients, and discern unique selling points. Furthermore, participants will develop expertise in the regulatory aspects of nutraceuticals, including NPD activities, GMP requirements, and quality management systems. The module	U	1, 2, 3, 4

	will also empower participants with key marketing terminologies,		
	focusing on FDA labelling, claims, expiration dates, and gluten-		
	free labelling, enhancing their ability to make informed decisions		
	in the nutraceutical industry.		
	Participants will grasp the foundational concepts of biochemical		
	entrepreneurship, exploring the transformative power of		
	technological innovations. They will master the art of securing		
	funds for biochemical ventures and navigate the complex regulatory		
	landscape, ensuring ethical practices and safeguarding intellectual		
3	property. By the end, participants will be equipped with the	An, E, S, C	1, 2, 3, 4
	knowledge and skills to initiate biochemically-driven		
	entrepreneurial endeavors.		
	Navigating Biochemical Ventures, participants will emerge		
	equipped with the expertise to navigate the intricate path from		
	laboratory discoveries to market realities. They will master the		
	essentials of commercialization, encompassing the definition of		
	commercialization in biochemistry and crucial stages in the process.		
	Through in-depth market analysis, participants will develop a keen		
	understanding of target audiences, market needs, and trends,		
	fostering strategic product development. Furthermore, participants		
4	will gain valuable insights into scaling operations, expanding	A. I, Ap	1, 5, 8
	globally, and fostering social impact through biochemistry,		
	establishing themselves as adept entrepreneurs in		
	the biochemical landscape.		
	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Cre	ate (C), Skill (S),	
Interes	t (I) and Appreciation (Ap)		

COURSE CONTENT

Module	Units	Course description	Hrs	CO
			45	No.
1		Health and Nutrition		
Foundations	1.1	• Nutrition, Classification, Benefits and Uses	3	1
of holistic		Herbal Food Supplements		
wellness:		• Preventive Care, Health care products as daily		
exploring		supplements.		
nutrition,		Role of Nutraceuticals supplements		
nutraceutical	1.2	Nutritional deficiency and disorders	3	1
, and herbal		• Preventive care and its role		
health		• Fruits / Food supplements and their nutritional values		

supplements		Lifestyle disorders		
	1.3	Life Style Diseases	5	1
		Imbalanced diet, Overeating		
		Under nourished diet		
		Indian and global scenario, Problems and outcome		
		Herbal Supplements		
	1.4	• Preventive Health care through Rejuvenative Herbs	4	1
		and its formulation		
		• Supplements for daily use from Common Herbs in Indian		
		Medicine		
		Nutraceutical business		
		• Dietary supplements, Functional foods, Phytochemicals,		
	2.1	Multivitamins, Nutraceutical product classifications,	4	2
		• Understanding various nutraceutical ingredients,		
		classifications, unique selling points		
2		Nutraceutical and disease management		
Navigating		Regulations and laws		
the	2.2	NPD and regulatory activities	5	2
nutraceutical		GMP requirements for nutraceutical plants		
landscape:		Quality management system		
business,		Registration and regulation of food supplements		
regulations,		Key terminologies of marketing		
and		• Nutraceutical labelling –FDA labelling, Label claim		
marketing	2.3	Net quality of content statement	4	2
essential		Expiration date		
		Gluten free labelling of food		
		 Food shelf life stability testing 		
		Biochemistry Unleashed: Understanding the		
		Entrepreneurial Potential		
		Definition and Scope:		
		 Defining Biochemical Entrepreneurship 		
		 Scope in the Interdisciplinary Landscape 		
	3.1	Historical Perspective:	5	3
		• Tracing the Roots of Biochemical		
3		Entrepreneurship		
Pioneering		 Key Milestones and Contributions 		
biochemical		Importance in Modern Industry:		
entrepreneurs		Role in Technological Advancements		
hip		• Contributions to Biotechnology and		
		Healthcare		

1		Case Studies of Biochemical Entrepreneurship:		
		Success Stories:		
		 Examining Notable Biochemical Ventures 		
	3.2	 Examining Notable Biochemical Ventures Factors Contributing to Success 	6	3,4
	5.2	_	0	3,4
		Learning from Failures:		
		Analyzing Unsuccessful Ventures		
		Identifying Common Pitfalls		
		Common Themes and Trends:		
		Patterns in Successful Ventures		
		Trends Shaping the Biochemical		
		Entrepreneurship Landscape		
		Emerging Trends:		
		Current Landscape:		
		• Overview of the Present Biochemical		
		Entrepreneurship Scenario		
		Market Dynamics and Industry Players		
		Future Projections:		
	3.3	Anticipated Developments in Biochemical	6	3,4
		Entrepreneurship		
		Potential Areas of Growth and Innovation		
		Industry Insights:		
		• Perspectives from Experts and Industry Leaders		
		• Predictions and Recommendations for		
		Aspiring Entrepreneurs		
4		Teacher Specific Module		
•				
	<u> </u>	Classroom Procedure (Mode of transaction)		
Teaching and		Lectures, group interactions, group seminar, power point presentation	20	
	oooh	Teaching aids used- ICT enabled Audio Visual Presentations, Internet I		
Learning Appro	Dach	hands on training of Bioinformatics tools and software.	Resourc	.05,
		hands on training of Biomormatics tools and software.		
		DE OF ASSESSMENT		
Assessment		A. Continuous Comprehensive Assessment (CCA) Theory		
Types		Total = 25 marks		
	<u> </u>	Test Papers/Assignments/Seminars		
		B. End Semester examination		
		Theory Total = 50 marks (Duration 1.5hrs) Multiple		
		Choice Questions $(1X 10) = 10$ marks Short Questions		
	1	(10 out of 12) X 2= 20 marks		
		Short essays (5 out of 7) X $4=20$ marks		

- Berg, Jeremy M., Tymoczko, John L., Stryer, Lubert. Biochemistry 6th Edition. B.i. Publications Pvt. Ltd. (2007) ISBN: 071676766X
- 2. Nelson, David L., Cox, Michael M. Lehninger Principles of Biochemistry, Fourth Edition.W. H. Freeman (2004) ISBN: 0716743396
- 3. Rastogi. Biochemistry. Mcgraw Hill (2008) ISBN: 0070527954
- 4. Voet, Donald, Voet, Judith G. Biochemistry. John Wiley & Sons Inc (2004) ISBN: 047119350X
- 5. West, E.S., Todd, W.R., Mason, H.S., van Bruggen, J.T. A Text Book of Biochemistry. Oxford and IBH Publishing Co. (1974)
- Zubay, Geoffrey L., Parson, William W., Vance, Dennis E. Principles Of Biochemistry. Mcgraw-hill Book Company–Koga (1995) ISBN: 0697142752

SUGGESTED READINGS

- 1. Banarjee, Pranab Kumar. (2008). Introduction to Biophysics. S. Chand & Company Ltd.
- 2. Das, Debajyoti. Biochemistry. Academic Publishers. Kolkata.
- 3. Mathews, Christopher K., van Holde, Kensal E., & Ahern, Kevin G. (2000). Biochemistry. Pearson Education.
- 4. West, E. S., Todd, W. R., & Van Bruggen, J. T. (1974). A Text Book of Biochemistry. Oxford and IBH Publishing Co.

Programme	BSc (Honours) Biological Sciences					
Course Name	FOOD AND INDUSTRIAL MICROBIOLOGY					
Type of	DSC A					
Course						
Course Code	UC6DSCBTS300					
Course	300					
Level						
Course	The course will enable students to apply the learning of microbiology concepts					
Summary	toward the exploitation of microbial population for industrial and human benefits.					
	The role of microbes in food spoilage, preservation and various food borne					
	diseases will be discussed. The strategies for development of microbial strains,					
	process optimization, large scale production and product recovery will					
	be covered for industrially relevant microbial products.					
Semester	VI		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		3	1021	1	0	75
Pre-						
requisites, if	All Come and Come					
any						
			//			

CO	Expected Course Outcome	Learning	РО
No.		Domains*	No
1	Developing an understanding about the concept, importance and	U	2,3
	scope of Food microbiology and industrial microbiology.		
2	Students learn techniques to isolate, maintain, and identify	U, A,S	2,3,9,10
	microorganisms from food samples.		
3	Build awareness about microbial spoilage of food and gain	U	2,3,9,10
	acquaintance with food borne diseases and their significance.		
4	Comprehend the functions of Microorganisms in food.	U,A	2,3,9,10
5	Discuss and apply methods for food preservation techniques-	U	2,3,9,10
	chemical preservation and irradiation.		
6	Know about the techniques to isolate and screen the significant	U,A	2,3,9,10
	microorganisms capable to produce food products.		
7	Understand the microbial roles in preparation of fermented foods.	U,A,I	2,3,9,10
8	Acquire knowledge about the benefits of fermented foods.	U,A,S	2,3,9,10
	mber(K), Understand (U),Apply(A), Analyse (An),Evaluate(E),Creat t(I) and Appreciation(Ap)	e(C),Skill(S),	1

Module	Unit Course description		Hrs 45	CO No.
1		Overview of Food Microbiology	8	
	1.1	Basic aspects, history and scope of food microbiology.	2	1
	1.2	Types of microorganisms associated with food - Bacteria, Molds	4	2,3
	1.3	Role and Significance of bacteria and molds in Foods.	2	2,3
		Microbial Food Spoilage and Preservation of Food	12	
	2.1	Definition and major causes of food spoilage. Spoilage of specific	2	3
		food groups: Spoilage of canned foods, cereals, fruits, bread, eggs, meat and fish.		
	2.2	A brief account on common food–borne infections and toxicoses - Salmonellosis, Botulism, Cholera, Mycotoxins -Aflatoxin in stored	2	3
		food and grains		
	2.3	Principles of food preservation	1	4
	2.4	Preservation Methods: High and low temperatures drying, chemical preservation, irradiation. St. 1921	1	
2	2.5	(i) Preservation by use of High temperature- Pasteurization, Heating at 100°C, Canning.	1	4
	2.6	(ii) Preservation by use of low temperature - chilling or cold storage - Freezing or Frozen storage	1	4
	2.7	(iii) Preservation by Drying - Sun drying - Drying by Freeze drying - Smoking	1	4
	2.8	 (iv) Preservation by food additives - Organic acids and their salts - Benzoates, Sorbates, Acetates, Nitrites and Nitrates. 	1	5
	2.9	 (v) Kinds of ionizing radiations used in food irradiation, uses of radiation processing in food industry, concept of cold sterilization 	2	5
3		Overview of Industrial Microbiology	10	
	3.1	Historical account of microbes in industrial microbiology.	2	1
	3.2	Sources and characters of industrially important microbes; their isolation, purification and maintenance and storage.	3	5
	3.3	Screening of useful strains; primary screening and secondary screening.	2	5
	3.4	Strain improvement of industrially important microbes through random mutation and genetic engineering.	3	15
		Industrial production of food products through fermentation	15	6
	3.5	Introduction to microbial products and fermentation process.	2	6

COURSE CONTENT

		Definition of fermentation and fermenters.		
	3.6	Types of industrial fermentation processes: Batch, continuous, submerged, and solid state fermentation (SSF).	4	6
	3.7	Bread manufacturing, beer manufacturing.	2	6
	3.8	Fermented milk products- cheese production process, starter culture, types of cheese.	2	7
	3.9	Other fermented dairy products- butter milk, acidophilus milk, yoghurt, paneer.	2	7
		Microorganisms as food - Single Cell Protein (SCP) SCP productionby algae and mycoprotein from fungi foruseas		7
	3.10	food and feed. Industrially used SCP(Quoron, Pruteen); Advantage and disadvantages of SCP.	3	
		PRACTICALS	30	
4		 Preparation of sterilized media Isolation of bacteria from food by Aerobic/Standard Plate Count using dilution plating technique Isolation of spoilage microorganisms from bread Isolation of spoilage microorganisms from spoiled vegetables/fruits Methylene blue reduction test for milk. Preservation of microbial cultures by making glycerol stocks Microbial fermentations for the production and estimation (qualitative and quantitative) of amylase. Food production by Microorganism: Fermented dairy products (Probiotic Curd, Yogurt) 		2,8
5 Teacher Specific Module				

	Classroom Procedure (Mode of transaction)		
Teaching and	Lecture, group interaction, individual assignments, seminar, presentations		
Learning	A visit to any educational institute/industry to see an industrial fermenter,		
Approach	and other downstream processing operations.		
	MODE OF ASSESSMENT		
	A. Continuous Comprehensive Assessment (CCA)		
Assessment	Theory Total=25 marks		
Types	Quiz/ Test Papers/ seminars		
	Practical Total 15 marks		
	Lab performance/ record/ Industry visit report		

B. End Semester Examination		
Theory Total 50 marks, Duration 1.5 hrs		
Fill in the blanks -1x10=10 marks		
Short questions-10 out of 12x2=20 marks		
Short Essays 5 out of 7x4=20 marks		
Practicals Total 35 marks Duration- 2 hrs		
Record 10 marks, Examination 25 marks: Performance of Experiments 16		
marks Viva-4 marks, research institute visit report- 5 marks		

- 1. Adams, M. R., & Moss, M. O. (2000). Food microbiology. Royal Society of Chemistry.
- 2. Berlanga, M. (2005). Food Microbiology: An Introduction. Thomas J. Montville, Karl R. Matthews (Eds). International Microbiology, 8(1), 74-75.
- 3. Casida, L. E. (1968). Industrial microbiology. Industrial microbiology.
- 4. Doyle, M. P., Diez-Gonzalez, F., & Hill, C. (Eds.). (2020). Food microbiology: fundamentals and frontiers. John Wiley & Sons.
- 5. Frazier, W. C., & Westhoff, D. C. (1978). Food Microbiology; TATA McGraw-Hill Pub. Co. Ltd. New Delhi.
- 6. Lund, B. M., Baird-Parker, T. C., & Gould, G. W. (Eds.). (2000). Microbiological safety and quality of food (Vol. 1). Springer Science & Business Media.
- 7. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation technology. Elsevier.
- 8. Waites, M. J., Morgan, N. L., Rockey, J. S., & Higton, G. (2009). Industrial microbiology: an introduction. John Wiley & Sons

SUGGESTED READINGS

- 1. Baltz, R. H., Demain, A. L., & Davies, J. E. (Eds.). (2010). Manual of industrial microbiology and biotechnology. American Society for Microbiology Press.
- 2. Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: fundamentals of applied microbiology. Cambridge University Press.
- 3. Marwaha S.S., Arora J.K. (2003). Biotechnological strategies in Agro-processing. (Asiatech Publishers Inc., New Delhi, India).
- 4. Patel A.H. (2007). Industrial microbiology. (New Age International Publishers).
- 5. Singh B.D. (2008). Biotechnology: Expanding Horizons. (Kalyani Publishers, India).
- 6. Stanier R.Y., Ingraham J.L., Wheelis M.L. and Painter R.R. (2008). General Microbiology. (Macmilian Press London).
- 7. Pommerville J.C. (2011). Alcamo

Programme	BSc (Honours) Biologica	BSc (Honours) Biological Sciences				
Course Name	HUMAN PHYSIOLOGY	MAN PHYSIOLOGY				
Type of	DSC A					
Course						
Course Code	UC6DSCBTS301					
Course	300					
Level						
Course	This course is designed	to provide	an overvie	ew of human	n physiolog	y. Course
Summary	topics will include the various systems of the body, functions of each system,					
	topies will include the	various syst	tems of the	body, funct	ions of eac	h system,
	and interrelationships to	•		•	ions of eac	h system,
Semester	-	•		•	1000000000000000000000000000000000000	h system, Total
Semester	and interrelationships to	•	he internal of	•		-
	and interrelationships to	•	he internal of	•		Total
Course	and interrelationships to VI	maintain th	he internal o Credits	environment	4	Total
Course	and interrelationships to VI Learning Approach	Lecture 3	he internal o Credits Tutorial	environment	4	Total Hours
Course Details	and interrelationships to VI Learning Approach	maintain th	he internal o Credits Tutorial	environment	4	Total Hours

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Understand Fundamental Concepts in Human Physiology:	U/A	2,3,10
2	Students should be able to explain interrelationships among molecular, cellular, tissue, and organ functions in each system	Е	2,3,10
3	Able to gain the approaches used to study various functional systems of the human body and physiologic adaptation	Ι	2,3,10
4	understand the experimental methods and designs that can be used for further study and research.	U	2,3,10
5	Students should be able to identify causes and effects of homeostatic imbalances	E	2,3,10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Cre at (I) and Appreciation (Ap)	ate (C), Skil	l (S),

COURSE CONTENT

Module	Units	Content for Classroom transaction (Units) Course description	Hrs.	CO
Mouule	Onits	course description	45	No.
	1.1	BLOOD &HAEMODYNAMICS: Formed		1100
	1.1	elements of blood, function and life span; hematopoiesis:	5	1
		abnormalities, Hemostasis & Thrombosis, Blood flow, Blood	5	
1		pressure.		
	1.2	CARDIOVASCULAR PHYSIOLOGY: Anatomy		
		and general function of heart. structure of cardiac tissue,	10	1,2
		cardiac cycle, conduction system,		
		ECG,(normal and abnormal)myocardial infraction, myocardial		
		necrosis and myocarditis		
	2.1	RESPIRATORY PHYSIOLOGY: , Anatomy of		
		Respiratory System, Physical principles of gas flow and resistance;		
		lung volumes, Transport of respiratory gases - transport of oxygen,		
		oxyhaemoglobin curve, factors affecting oxyhaemoglobin curve,		
		transport of carbon dioxide, (chloride shift).	10	1,3
		Respiratory disturbances (Hypoxia, Hypercapnia, Asphyxia).		
		Oxygen therapy and artificial respiration		
	2.2	DIGESTIVE PHYSIOLOGY: Anatomy and histology of digestive		
2		glands (liver, pancreas, salivary, gastric and intestinal). Nervous and		
		hormonal control of digestion. Gut-brain interaction: Gut-liver-brain		
		axis, neuronal & endocrine regulations, role of		
		micro biomes, role of phytochemicals including phytoestrogen,	10	3
		phyto insulin & phytopolyphenoles Pathophysiology of GI tract:		
		Secretary diarrhea, ulceration, irritable bowel syndrome& Crohn's		
		diseases		
	3.1	RENAL PHYSIOLOGY: Histology of Bowman's capsule and		
		tubular part. Urine formation – glomerular filtration, tubular	10	
		reabsorption, tubular secretion. Urine concentration – counter	10	3
		current mechanism. hormonal regulation of kidney function Renal		
		disorders(kidney stone, acute and		
		chronic renal failure, and dialysis		_
2	3.2	NERVOUS PHYSIOLOGY: Ultra structure of neuron. Nerve	5	
3		impulse production (resting membrane potential, action		3
		potential), transmission of impulse along the nerve fiber,		
		interneuron		

	3.3	 (synaptic) transmission, neuromuscular junction and transmission of Impulses. Neurotransmitters (acetyl choline, adrenalin, dopamine).EEG. Memory, Neural disorders (brief account on Dyslexia, Parkinson's disease, Alzheimer's disease, Epilepsy SPORTS PHYSIOLOGY-: Structure of Skeletal Muscle, (Neuromuscular Junction, Muscular Contraction). Overview of the 		
		Sliding Filament Model, muscle metabolic system in exercise, Effect of athletic training on Muscle and Muscle performance	5	5
	3.4	ENDOCRINOLOGY: Endocrine physiology: Hormones – classification and mechanism of hormone action. Major endocrine glands(Histology is not included) their hormones, functions and disorders (hypothalamus, pituitary gland, pineal gland, thyroid gland, parathyroid gland, islets of Langerhans, adrenal gland),. Homeostasis and feedback mechanism.	5	3,5
		PRACTICALS	30	
4		 Determination of hemoglobin content of blood 2). Total RBC count using Haemocytometer 3)Total WBC count using Haemocytometer 4). Estimation of microhaematocrit 5). Effect of hypertonic, hypotonic and isotonic solutions on the diameter of RBC 6) Demonstration of hemin crystals 7. ESR 8. Blood grouping (ABO, Rh). 9. Bleeding time and Clotting time 10. Instruments: Kymograph, Sphygmomanometer and Stethoscope (principle and use) 		3,4
5		Teacher Specific Module		

	Classroom Procedure (Mode of transaction)
Teaching	Classroom lectures
and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,
Learning	interactive Instruction:, Active co-operative learning, Seminar, Group
Approach	Assignments Authentic learning, , Library work and Group discussion,
	Presentation by individual student/ Group representative
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA)
Types	Theory Total=25 marks
	Quiz/ Test Papers/ seminars
	Practical Total 15 marks
	Lab performance/Lab report/ Viva Voice

B. End Semester examination	
Theory Total 50 marks, Duration 1.5 hrs	
Fill in the blanks /MCQ- $(10 \text{ x1}) = 10 \text{ marks}$	
Short questions- $(10 \text{ out of } 12) \ge 20 \text{ marks}$	
Short Essays (5 out of 8) x $4 = 20$ marks	
Practical total 35 marks:	
Record-10, Examination - 25	

- 1. Arthur C. Guyton and John E. Hall; 2016; Text Book of Medical Physiology: Guyton, 13th edition; Elsevier
- 2. Barrington, E. J. W.; 1975; General and Comparative Endocrinology, Oxford, Clarendon Press.
- 3. Geetha N. 2014. Textbook of Medical Physiology: Paras Medical Publishers, 3rd edition
- 4. Jain, A K.; 2016; Textbook of Physiology., Avichal Publishing Company
- 5. Martin, C.R. 1985.Endocrine Physiology: Oxford University Press.
- 6. Melmed, Shlomo, Williams, Robert Hardin; 2011; Textbook of Endocrinology: Elsevier, 12thedition.
- 7. Ox, S.I.(2006) Human Physiology9th ed. McGraw Hill International Edition
- 8. Seeley, R.R., Stephens, T.D., and Tate, P(2006) Anatomy and Physiology7th ed. McGraw Hill International Edition
- 9. Thibodeau, G.A., and Patton, K.T(2007)Anthon's Textbook of Anatomy and Physiology. 18th ed. Mosby
- Tortora, G.J., and Derrickson, B (2006) Principles of Anatomy and Physiology11th ed. John Wiley & Sons, Inc.

Programme	BSc (Honours) Biological Sciences					
Course Name	BIOTECHNOLOGY FOR	SIOTECHNOLOGY FOR HUMAN WELFARE				
Type of	DSE					
Course						
Course Code	UC6DSEBTS300					
Course	300					
Level						
Course	Course provides a compre	hensive ov	erview of th	ne application	n of biotechr	nology in
Summary	various aspects of human	well being				
Semester	VI		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		3 0 1 0 75				
Pre- requisites,		•				
if any						

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To understand the historical background and application of biotechnology	K,U	2,3,10
	To apply biotechnological methods to improve crop yield, quality and resistance to pests, diseases, and environmental stress	U,A,E	2,3,10
	To gain a comprehensive understanding of the principles and techniques used in medical biotechnology	U, A, An	2,3,10
	To equip the students with the knowledge and skills necessary to manipulate and optimize the production of desired metabolite	U, A. An, E	2,3,10
	Students will develop the skills to assesses the suitability effectiveness of different biotechnological methods in solving specific environmental problems and also learn the biotechnological intervention for sustainable development	U, A, An, E ,S	2,3,10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Creat t (I) and Appreciation (Ap)	e (C), Skill (S	5),

COURSE CONTENT

Module	Units	Course description	Hrs 45	CO No.
		Introduction		
	1.1	History of Biotechnology	1	1

	1.2	Role of biotechnology in human welfare	2	1
	1.3	Applications of biotechnology	2	1
		Agriculture Biotechnology		
	1.4	Plant disease and its Classification Disease free plants	2	2
		development: meristem culture, ovule culture		
	1.5	Biofortification of crops using biotechnology : mineral bio	2	2
1		fortification using transgenic plants, vitamin biofortified rice,		
		golden banana		
	1.6	Transgenic plants :	4	2
		Flavr - Savr tomato		
		Pest and Drought resistant crops GM crops		
		Biopharming		
	1.7	Marker assisted selection of crops Molecular markers and its types,	2	2
		marker assisted selection, QTL mapping		
		Medical Biotechnology		
	2.1	Production of recombinant vaccines and therapeutic recombinant	3	3
		products(blood factors, hormones, growth factors,		
		interferon's, interleukins) st in 1921		
	2.2	Gene therapy : Introduction, somatic and germ line gene therapy,	5	3
		gene replacement and gene addition, in vivo gene therapy, viral		
		vectors, cancer gene therapy		
2	2.3	Diagnosis of various diseases using DNA Probe and monoclonal	4	3
		antibodies:		
	2.4	Techniques used in the medical biotechnological field	3	3
	2.5	Current trends: Stem cell therapy, tissue engineering personalized	3	3
		medicine, regenerative medicine		
		Industrial Biotechnology		
	3.1	Metabolite engineering: Introduction, ways for metabolite	6	4
		engineering, requirements and different approaches of		

		metabolite engineering, applications.		
		Metabolic engineering in plants and microbes		
	3.2	Protein engineering: Introduction, objectives, techniques,	3	4
		applications		
	3.3	Enzyme engineering: Role of enzymes in food and industry	3	4
		Environmental biotechnology		
	3.4	Introduction to Environmental Biotechnology: Providing an	2	5
		overview of the field and its importance in sustainable		
		development, wastewater treatment		
	3.5	Environmental Microbiology: Exploring the role of	5	5
3		microorganisms in environmental processes, including		
		biodegradation, bioaccumulation, and		
		bioremediation. genetic engineering and bioremediation.		

	3.6	Production of biofuel such as ethanol and biodiesel	1	5
	3.7	Bioplastics	1	5
	3.8	Environmental Monitoring and Analysis	1	5
		PRACTICALS	30	
		1. Perform of ethanolic fermentation using Baker's yeast		4,5
		2. Study of a plant part infected with a microbe		
		3. To perform quantitative estimation of residual chlorine in		
4		water samples		
		4. Isolation and analysis of DNA from minimal available		
		biological samples		
		5. Case studies based on applications of biotechnology (any one		
		topic from theory syllabus)		
5		Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)
and	Lecture, group interaction, Video presentations individual assignments, seminar,
Learning	presentations, Article and general reviews
Approach	Est. in 1921
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA)
Types	Theory Total=25 marks
	Quiz/ Test Papers/ seminars
	Practical Total 15 marks: Lab performance/ record/ Industry visit
	report
	B. Semester End examination
	Theory Total 50 marks, Duration 1.5 hrs
	Fill in the blanks $-(10 \text{ x } 1) = 10 \text{ marks}$
	Short questions- $(10 \text{ out of } 12) \ge 20 \text{ marks Short}$
	Essays (5 out of 7) x $4 = 20$ marks
	Practicals Total 35 marks Duration- 2 hrs Record
	10 marks
	Examination 25 marks: Performance of Experiments 16
	marks Viva-4 marks, Report writing- 5 marks

- 1. Barnum, S. R. (2007). Biotechnology: An Introduction. Thomson, Brooks/Cole.
- 2. Brown, T. A. (2014). Gene cloning: An Introduction. John Wiley.
- 3. Dale, J. W., von Schantz, M., & Plant, N. (2010). From Genes to Genomes: Concepts and Applications of DNA Technology. Wiley–Blackwell.
- 4. Glick, B. J., Pasternac, J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. American Society for Microbiology

Publisher.

- Glick, B. R., Patten, C. L., & Delovitch, T. L. (Eds.). (2020). Medical Biotechnology. John Wiley & Sons.
- 6. Green, M. R., & Sambrook, J. (2012). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
- 7. Primrose, S. B., Twymann, R., & Old, B. (2001). Principles of Gene Manipulation: An Introduction to Genetic Engineering. Wiley–Blackwell.
- 8. Snyder, M. (2016). Genomics and Personalized Medicine: What Everyone Needs to Know (1st ed.). OUP-USA.

SUGGESTED READINGS

- 1. Baianu, I. C., Lozano, P. R., Prisecaru, V. I., & Lin, H. C. (2004). Applications of novel techniques to health foods, medical and agricultural biotechnology. arXiv preprint q- bio/0406047.
- Chapekar, M. S. (2000). Tissue engineering: challenges and opportunities. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 53(6), 617-620.
- 3. Godbey, W. T. (2014). An introduction to biotechnology: the science, technology and medical applications. Elsevier.
- 4. Iwamoto, T., & Nasu, M. (2001). Current bioremediation practice and perspective. Journal of bioscience and bioengineering, 92(1), 1-8.
- McKay, L. L., & Baldwin, K. A. (1990). Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiology reviews, 7(1-2), 3-14.
- Mora-Vásquez, S., Wells-Abascal, G. G., Espinosa-Leal, C., Cardineau, G. A., & García-Lara,S. (2022). Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metabolic Engineering Communications, 14, e00194.
- Pathak, S., Agarwal, A. V., Agarwal, P., & Trivedi, P. K. (2019). Secondary metabolite pathways in medicinal plants: approaches in reconstruction and analysis. Molecular Approaches in Plant Biology and Environmental Challenges, 339-364.
- 8. Pham, P. V. (2018). Medical biotechnology: Techniques and applications. In Omics technologies and bio-engineering (pp. 449-469). Academic Press.
- 9. Ribaut, J. M., & Hoisington, D. (1998). Marker-assisted selection: new tools and strategies. Trends in Plant Science, 3(6), 236-239.
- Sharma, H. C., Crouch, J. H., Sharma, K. K., Seetharama, N., & Hash, C. T. (2002). Applications of biotechnology for crop improvement: prospects and constraints. Plant Science, 163(3), 381-395.
- Soller, M. (1994). Marker assisted selection-an overview. Animal Biotechnology, 5(2), 193-207.
- Wilson, S. A., & Roberts, S. C. (2014). Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Current Opinion in Biotechnology, 26, 174-182.

Programme	BSc (Honours) Biolo	gical Scie	nces						
Course Name	INTRODUCTION TO BIOINFORMATICS								
Type of	DSE								
Course									
Course Code	UC6DSEBTS301								
Course	300								
Level									
Course	Introduce students to b	Introduce students to biological databases and their resources for developing skills in							
Summary	molecular biology rese	earch. The	y will also g	gain an unde	erstanding in cor	relating			
	chemical structures wi	th their bio	logical acti	vities by usi	ng tools in bioin	formatics and			
	Cheminformatics havi	ng applica	tions in biod	chemistry, n	nolecular modeli	ng and drug			
	discovery.								
Semester	VI		Credits		4	Total			
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours			
Details		4	0	0	0	60			
Pre- requisites,	None								
if any		-	1. 100	1 1					
	1	ESt.	in 192						

CO		Learning	РО
No.	Expected Course Outcome	Domain*	No
1	Gain knowledge on the significant role of biological databases and learn	U,K	2,3,10
	to navigate and search various biological databases for retrieving		
	biological data.		
2	Analyze and interpret biological data and become proficient in the	An,A	2,3,10
	principles, methodologies, and tools in Bioinformatics		
3	Acquire the skills to perform sequence database searches, identify	S,A	2,3,10
	homologous sequences, and evaluate sequence similarity and analysis.		
4	Develop a foundation in the core principles and concepts of	U	2,3,10
	cheminformatics, including molecular representations, chemical		
	databases, and structure-activity relationships.		
5	Apply the software and tool used in cheminformatics for research and	A,S	2,3,10
	industry setting applications in biochemistry and drug discovery		
	Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Creater (An), Evaluate(E), Creater (An), Evaluate(E), Creater (An), Evaluate(E), Creater (An), Creater ((C), Skill(S),	
	Interest(I)and Appreciation(Ap)		

COURSECONTENT

Module	Units	Course description	Hrs 60	CO No.
1	1.1	Bioinformatics. Definitions and brief history. Bioinformatics vs. Computational Biology; Scope/ Research Areas of Bioinformatics. Nature of biological data, introduction to biological databases. Pharmaceutical, R&D and Bioinformatics industries and Institutions in India & the World. Case study on job profiles of a bioinformatician.	5	1
	1.2	Introduction to Biological Databases: Nature and scope of biological data. Understanding the importance and role of biological databases in modern research and bioinformatics Types of Biological Databases: Overview of various types of databases. Sequence databases NCBI (GenBank, UniProt), structure databases (PDB), gene expression databases (GEO), and metabolic pathway databases (KEGG).	5	1
	1.3	Database Searching Techniques: Introduction to different search methods and algorithms used in biological databases, including keyword searches. Literature Searches using PubMed Effective search strategies and advanced query construction. Critical evaluation of scientific literature and accessing full-text articles.	5	1,2
	2.1	Introduction to sequence alignment and its significance. Dynamic Programming algorithms- Needleman Wunsch& Smith Waterman Algorithms. Scoring matrices & substitution matrices	5	2,3
	2.2	Utilizing BLAST (Basic Local Alignment Search Tool) for sequence similarity searches. Interpreting BLAST results and assessing sequence alignments.	5	2,3
2	2.3	Multiple Sequence Alignment and Phylogenetic Analysis Introduction to multiple sequence alignment algorithms. Hands-on practice with ClustalW for multiple sequence alignment. Constructing phylogenetic trees using aligned sequences in MEGA	5	2,3
	3.1	Introduction to Cheminformatics: An overview of the field, combinatorial chemistry its applications, and its relevance in modern biochemistry and drug discovery	5	4
3	3.2	Chemical Databases and Data Mining: Teach students how to retrieve, analyze, and interpret chemical data from various databases, such as PubChem or Chemical Abstracts Service (CAS).	5	4,5

	3.3	Molecular Modeling and Visualization: Molecular modeling techniques, molecular docking, molecular dynamics simulations, and visualization using tools PyMOL and Chimera. MolecularDescriptors and Chemical Similarity: Using molecular descriptors to assess similarity between different chemical compounds.	5	4,5
	4.1	Cheminformatics Software and Tools: Introduce students to commonly used software and tools in the field, such as RDKit, ChemAxon, ChemSketch or Open Babel	5	4
4	4.2	Structure-Activity Relationship (SAR) Analysis: Exploring the principles and methodologies behind SAR analysis, which involves correlating chemical structures with their biological activities. QSAR in drug discovery.	5	5
	4.3	Application of the tools in cheminformatics tasks. The role of cheminformatics in drug discovery, including virtual screening, lead optimization, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions.	5	4,5
5		Teacher Specific Module		

Teaching	Classroom Procedure(Mode of transaction)					
and	Lectures, group interactions, group seminar, power point presentations, case					
Learning	studies					
Approach	Teaching aids used-Audio Visual Presentation, Photographs, Internet Resources					
	MODEOFASSESSMENT					
	A. Continuous Comprehensive Assessment(CCA)					
Theory Total = 25 marks						
	Test Papers/Assignments/Seminars					
Assessment	Practical Total= 15 marks					
Types	Case Study presentations					
	Chart/Visual presentations					
	Case Study Reports					
	B. End Semester examination					
	Theory Total = 50 marks (Duration 1.5 hrs)					
	Multiple Choice Questions $(1X 10) = 10$ marks					
	Short Questions (10 out of 12) $X = 30$ marks					
	Short essays (6 out of 8) $X = 30$ marks					

11

- 1. Bajorath, J. (2015). Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery. Royal Society of Chemistry.
- 2. Bandyopadhyay, S. (2014). Chemoinformatics: Theory, Practice, & Products. New Delhi, India: Springer India.
- 3. Chakraborty, A. (2017). Introduction to Chemoinformatics. New Delhi, India: PHI Learning Private Limited.
- 4. Deshmukh, M. V., &Deshmukh, R. V. (2011). Bioinformatics and functional genomics. PHI Learning Pvt. Ltd.
- 5. Gupta, R., & Singh, A. (2017). Computer-Aided Drug Design: Indian Perspective. New Delhi, India: Wiley India Pvt Ltd.
- 6. Jones, A. R., & Pevzner, P. A. (2012). Introduction to Bioinformatics: A Theoretical and Practical Approach. Oxford University Press.
- 7. Leach, A. R., & Gillet, V. J. (2007). An Introduction to Chemoinformatics. Springer.
- 8. Lesk, A. M. (2008). Introduction to bioinformatics. Oxford University Press.
- 9. Mohapatra, S., & Jena, B. K. (2015). Chemoinformatics: Advanced Applications. New Delhi, India: CRC Press.
- 10. Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis. Cold Spring Harbor Laboratory Press.
- 11. Nagarajan, R. (2017). Bioinformatics: High performance parallel computer architectures. CRC Press.
- 12. Pevzner, P. A., & Shamir, R. (2009). Bioinformatics for biologists. Cambridge University Press.
- 13. Sharma, A., & Agarwal, A. (2015). Molecular Docking and Drug Design: Indian Approaches. Jaipur, India: InTechOpen.
- 14. Singh, P., & Jain, S. (2013). Computer-Aided Drug Design: Indian Scenario. Hyderabad, India: I.K. International Publishing House Pvt. Ltd.
- 15. Sundararajan, V. S., & Krishnan, A. (2015). Bioinformatics and computational biology: An introduction. CRC Press.
- 16. Xiong, J. (2006) Essential Bioinformatics. Cambridge University Press, Cambridge.

SUGGESTEDREADINGS

- 1. Chen, S., Yang, P., & Jiang, F. (2015). A novel approach for protein sequence analysis using deep learning techniques. Bioinformatics, 31(12), 1875-1881.
- 2. Desmukh, S. K., Srivastava, V. K., &Saxena, A. K. (2014). Molecular docking: challenges, advances and its use in drug discovery perspective. Current drug targets, 15(10), 951-970.
- 3. Gupta, S., Kapoor, P., & Sharma, G. (2018). Recent advances in cheminformatics: Methods, tools, and applications. Bioinformatics, 34(6), 997-1012.
- Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of medicinal chemistry, 47(7), 1750-1759.
- 5. Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a

molecular similarity-based search engine. Journal of medicinal chemistry, 46(4), 499-511.

- 6. Kitchen, D. B., Decornez, H., Furr, J. R., &Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, 3(11), 935-949.
- Miller, R. K., Anderson, N. J., & Brown, E. F. (2013). Comparative analysis of sequence alignment algorithms for bioinformatics applications. Bioinformatics, 29(4), 435-443.
- 8. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson,
- A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14), 1639-1662.
- 9. Morris, G. M., Huey, R., & Olson, A. J. (2009). Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics, 24(1), 8.14.1-8.14.40.
- 10. Smith, J. D., Johnson, A. B., & Williams, C. D. (2010). Advances in bioinformatics sequence analysis: A comprehensive review. Bioinformatics, 25(15), 1901-1910.
- 11. Trott, O., & Olson, A. J. (2010). AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
- 12. Wang, L., Li, W., & Zhang, X. S. (2016). Bioinformatics analysis of protein-protein interactions using cheminformatic tools. Bioinformatics, 32(7), 1018-1025.

Programme	BSc (Honours) Biological Sciences						
Course Name	ANIMAL CELL CULTURE AND STEM CELL BIOLOGY						
Type of	DSE						
Course							
Course	UC6DSEBTS302						
Code							
Course	300	300					
Level							
Course	Course give an understandi	ng and pro	vide invalu	able tool for	studying an	d	
Summary	manipulating cell, enabling	advancem	ent in variou	us fields of re	esearch and a	application	
Semester	VI		Credits		4	Total	
	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Course		4	0	0	0	60	
Details							
Pre- requisites,	No				•		
if any							

CO		Learning	РО
No.	Expected Course Outcome	Domains*	No
1	Understanding the principles theories and application behind animal	U	2,3,10
	cell culture and stem cell biology		
2	Develop proficiency in sterile technique and aseptic handling of cell	U,A,S	2,3,10
	cultures		
3	Acquiring knowledge of different types of cell culture media and	U,A,S	2,3,10
	their formulation		
4	Familiarizing the usage of equipment's used in cell culture labs	U	2,3,10
5	Gaining knowledge on stem cell plasticity and propagation of	U,A,S	2,3,10
	embryonic stem cells, nuclear transfer technology, animal cloning		
	and stem cell differentiation		
6.	Learning stem cells and tissue engineering, human embryonic stem	U,A	2,3,10
	cells		
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Cre	ate (C), Skill	(S),
Interes	t (I) and Appreciation (Ap)		

Module	Units	Course description	Hrs	CO
			60	No.
		Animal Cell culture		
		Introduction to Animal cell culture	20	
	1.1	History of animal cell culture; Laboratory setup and equipment	3	1
1	1.2	Types of cell culture media, media constituents, CO2	4	3,4
		incubation & bicarbonate Buffering.		
		Sterilization of cell culture media		
	1.3	Isolation of tissue. Disaggregation of tissue –	5	1
		Mechanical and Enzymatic		
		methods. Primary and secondary cell culture, monolayer culture and		
		suspension culture, Passaging number		
	1.4	Specialized cell culture technique: Histotypic cell culture,	6	3
		embryonic cell culture and adult stem cell		
		culture, organ culture, fetal cell culture, three- dimensional cell		
		culture Est in 1921		
	1.5	Maintenance of cell lines- cryopreservation and germplasm storage.	2	2
		Application of animal cell culture technology	10	
	2.1	Vectors for animal cells- adeno based vectors, SV 40, baculovirus.	5	3
		Measurement of		
2		viability & cytotoxicity; Cell cloning and		
		selection; Cell synchronization		
	2.2	Application of animal cell culture technology: Production of human	5	1,3
		and animal vaccines and		
		pharmaceutical protein, Transgenesis, transgenic mice and cattle.		
		Stem cell Biology		
		Introduction to stem cell biology	18	
	3.1	Basic Stem Cell Biology- Introduction to stem cells, Types of	5	1
		stem cells (Embryonic, Adult, and Induced Pluripotent Stem		
		Cells), Stem cell niches, Potency and differentiation.		
3.	3.2	Animal cloning: Overview; challenges in human therapeutic	5	5
		cloning; somatic cell nuclear transfer in humans: pronuclear early		
		embryonic development.		
	3.3	Stem cell plasticity: Overview; self-renewal potential;	4	5
		differentiation versus stem cell renewal; trans differentiation		
	3.3	Stem cell differentiation: Overview; adult stem cells; fetal stem	4	5
		cells; human embryonic stem cells		
		Application of Stem Cell Therapy& Ethical and legal issues	12	
		in stem cell Research		

COURSE CONTENT

	4.1	Stem cell in disease modelling, gene therapy, organ transplantation, Personalized medicine.	6	6
4	4.2	Ethical consideration in embryonic stem cell research, Informed consent in stem cell research, Ownership and patenting issues, controversies and public opinion, Regulation of stem cell research- global perspective.	6	6
5		Teacher specific module		

Teaching &	Classroom Procedure (Mode of transaction)			
Learning	ICT Enabled Learning, Tutorial, Lecturing, Seminars, Articles and general reviews			
Approach				
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
Assessment Types	Theory Total=30marks			
	Quiz/ Test Papers/ Seminar			
	B. End Semester examination			
	Theory Total 70 marks, Duration 2 hrs			
	Fill in the blanks $-10 \text{ x1} = 10 \text{ Marks}$			
	Short questions-(10 out of 12) x $3 = 30$ Marks, Short			
	Essays (6 out of 8) x $5 = 30$ Marks,			

- 1. Anderson, W. A., et al. (2018). Advances in Biochemical Engineering/Biotechnology. Springer.
- 2. Chawla, H. S. (2002). Biotechnology in Crop Improvement. CRC Press.
- 3. Freshney, R. (2005). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications (5th ed.). John Wiley & Sons.
- 4. Gupta, P. K. (2019). Elements of Biotechnology. Rastogi Publications.
- 5. Hammond, J., et al. (2017). Plant Biotechnology. Springer Verlag.
- 6. Henry, R. J. (1998). Practical Application of Plant Molecular Biology. Chapman & Hall.
- 7. In Vitro Cultivation of Animal Cells. (2002). Elsevier India Pvt Ltd.
- 8. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., .. & Matsudaira, P. (2016). Molecular cell biology. Macmillan.
- 9. Mantell, S. H., et al. (1991). Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants. Butterworth-Heinemann.
- 10. Masters, J. R. W. (2000). Animal Cell Culture: A Practical Approach (3rd ed.). Oxford University Press.
- 11. Narayanswamy, S. (2013). Plant Cell and Tissue Culture. Tata McGraw-Hill.
- 12. Robert Lanza Handbook of Stem Cells Volume 1 and 2 Eds
- 13. Vasil, A. K. (1984). Cell Culture and Somatic Cell Genetics of Plants (Vols. 1-3). Academic Press.

SUGGESTED READINGS

- 1. Al-Rubeai, M. (Ed.). (2015). Animal cell culture.
- 2. Chaicharoenaudomrung, N., Kunhorm, P., & Noisa, P. (2019). Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World journal of stem cells, 11(12), 1065.
- 3. Clynes, M. (Ed.). (2012). Animal cell culture techniques. Springer Science & Business Media.
- 4. McKee, C., & Chaudhry, G. R. (2017). Advances and challenges in stem cell culture. Colloids and surfaces B: Biointerfaces, 159, 62-77.

Programme	BSc (Honours) Biologica	al Sciences						
Course Name	FROM LAB TO LIFE	FROM LAB TO LIFE						
Typeof	VAC	VAC						
Course								
Course Code	UC6VACBTS300	UC6VACBTS300						
Course	300							
Level								
Course	Value added course which	h aims to b	ring awarer	less and und	erstanding of	the life		
Summary	skills required to navigate	e smoothly	in the worl	d we live in	and its releva	nce in		
	promoting well being and	l quality of	life.					
Semester	VI		Credits		3	Total		
Course	LearningApproach	Lecture	Tutorial	Practical	Others	Hours		
Details	3 0 0 0 45							
Pre- requisites,	None				•	·		
if any								

CO	Expected Course Outcome	Learning	PO
No.		Domain*	No
1	Understand the fundamental principles of nervous system in biology	U, K	2,3,10
	and life, its relation to overall well being.		
2	Learning the structure and function of the brain and how it's responsible	U,K	2,3,10
	for maintaining human health and wellness.		
3	Develop the ability to express their thoughts and ideas freely and	U,A	2,3,10
	confidently and learn effective strategies to prioritize tasks on their own.		
4	Understand and manage their emotions and evaluate different	U,An,C	2,3,10
	perspectives, and make informed decisions		
5	Develop strategies and skills to deal with setbacks, manage stress, and	A,C	2,3,10
	cope with adversity, fostering mental and emotional resilience.		
*Reme	mber(K),Understand(U),Apply(A), Analyse(An),Evaluate(E),Create(C),Sk	till(S),	
Interes	t(I)and Appreciation(Ap)		

COURSE CONTENT

Module	Units	Course description	Hrs	СО
			45	No.
	1.1	Introduction to the nervous system; Sympathetic, parasympathetic and	3	1,2
		Autonomous system.		
1	1.2	Structure and functions of the brain	3	1,2
		(With reference to regions which play roles in stress responses)		
	1.3	The role played by neurotransmitters and hormones in stress responses.	3	1,2

1.4	Understanding the perspectives of life and how it relates to biology and	3	1,2
	wellness.		
2.1	Life Skills needed for a healthy life Effective	3	3
	Communication		
	Critical Thinking		
2.2	Study and motivation, Time management Lifelong learning, Financial	4	1,4
	literacy		
	Social media, its impact and how it changed our		
	lives.		
2.3	Problem solving, Scientific temper, Resilience	5	3,4
	Responsibility and Commitment. Emotional intelligence		
3.1	Role of sleep and mental health	2	1,2,4
3.2	Managing difficult emotions Anger Management	4	4,5
	Grief Management		
	Stress management		
3.3	Relaxation Techniques		1,2,4,5
	1. Yoga		
	2. Cardio training EST. IN 1921	15	
	3. Mindfulness		
	4. Meditation		
	(Hands on training sessions and teaching)		
	Teacher Specific module		
	2.1 2.2 2.3 3.1 3.2	 wellness. 2.1 Life Skills needed for a healthy life Effective Communication Critical Thinking 2.2 Study and motivation, Time management Lifelong learning, Financial literacy Social media, its impact and how it changed our lives. 2.3 Problem solving, Scientific temper, Resilience Responsibility and Commitment. Emotional intelligence 3.1 Role of sleep and mental health 3.2 Managing difficult emotions Anger Management Grief Management Stress management 3.3 Relaxation Techniques Yoga Cardio training Est. in 1921 Mindfulness Meditation (Hands on training sessions and teaching) 	wellness. 3 2.1 Life Skills needed for a healthy life Effective Communication Critical Thinking 3 2.2 Study and motivation, Time management Lifelong learning, Financial literacy Social media, its impact and how it changed our lives. 4 2.3 Problem solving, Scientific temper, Resilience Responsibility and Commitment. Emotional intelligence 5 3.1 Role of sleep and mental health 2 3.2 Managing difficult emotions Anger Management Stress management 4 3.3 Relaxation Techniques 1 1. Yoga 15 3. Mindfulness 4 4. Meditation (Hands on training sessions and teaching) 15

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Lectures, group interactions, group seminar, power point presentations
Approach	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA) Theory
Types	Total = 25 marks
	Test Papers/Assignments/Seminars
	B. End Semester Examination
	Theory Total = 50 marks (Duration 1.5 hrs)
	Fill in the blanks $(10 \text{ X } 1) = 10 \text{ marks}$
	Short Questions (10 out of 12) X $2=20$ marks
	Short essays (5 out of 7) X $4=20$ marks

REFERENCES

- 1. Campbell, N. A., & Reece, J. B. (2019). Biology. Pearson.
- 2. Gardner, R. (2020). Mindfulness for Stress Relief: Guided Meditations to Rewire Your Brain for Relaxation. Los Angeles, CA: Publisher.
- 3. Guyton, A. C., & Hall, J. E. (2015). Textbook of Medical Physiology (13th ed.). Philadelphia, PA: Elsevier.
- 4. Johnson, G. B., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology. McGraw-Hill Education.
- 5. Johnson, M. (2017). The Stress Solution: Proven Techniques to Reduce Stress and Improve Well-being. Chicago, IL: Publisher.
- 6. Larkin, M. (2013). Health and Well-Being Across the Life Course; Sage Publications.
- 7. Mader, S. S., &Windelspecht, M. (2020). Essentials of Biology. McGraw-Hill Education.
- 8. Nestler, E. J., Hyman, S. E., &Malenka, R. C. (2009). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). McGraw-Hill Medical.
- 9. Singh, R. K. (2020). Medical Biochemistry: Principles and Applications. New Delhi, India: ABC Publishers.
- 10. Smith, J. (2021). Coping with Grief: Effective Techniques for Healing and Recovery. New York, NY: Publisher.
- 11. Tortora, G. J., &Derrickson, B. H. (2017). Principles of Anatomy and Physiology (15th ed.). Hoboken, NJ: Wiley.
- 12. Chambers, K. (2017). Anger Management: A Psychologist's Guide to Identifying and Controlling Anger - Master Your Emotions and Regain Control of Your Life. Publisher: CreateSpace Independent Publishing Platform.
- 13. Brown, S., & Williams, A. (2019). Stress Management Strategies: A Practical Guide. Boston, MA: Publisher.
- 14. Nutt, D. J., Malizia, A. L., & Zohar, J. (2008). Current perspectives on the neurobiology of anxiety and its treatment. Human Psychopharmacology: Clinical and Experimental, 23(6), 363-374.
- 15. ThichNhat Hanh (2002) Anger: Wisdom for Cooling the Flames.

SUGGESTED READINGS

- 1. Anderson, C. M., & Miller, E. F. (2019). The microbiome and its implications for human health. Current Biology, 29(16), R719-R722.
- 2. Brown, K. L., & Davis, R. M. (2021). The impact of nutrition on immune function: A comprehensive review. Nutrition Reviews, 79(2), 144-165.
- 3. Clark, A. J., & Patel, N. B. (2019). The influence of genetics on disease susceptibility. Current Opinion in Immunology, 60, 98-102.
- 4. Hall, M. E., & Loprinzi, P. D. (2020). Physical activity and cardiovascular health: An update. American Journal of Lifestyle Medicine, 14(6), 580-586.
- 5. Johnson, L. M., & Thompson, R. W. (2020). The effects of stress on mental health and well- being. Journal of Health Psychology, 25(8), 1052-1065.
- 6. Roberts, S. G., & Williams, M. A. (2019). Understanding the genetics of obesity:

From genes to pathways. Clinical Genetics, 95(1), 6-14.

- 7. Smith, J. D., & Johnson, A. B. (2020). The role of exercise in promoting cardiovascular health. Journal of Applied Physiology, 125(3), 456-468.
- 8. Smith, J. D., & Johnson, A. L. (2020). Effective Stress Management Techniques: A Comprehensive Guide. Journal of Applied Psychology, 25(2), 134-150.
- 9. Taylor, R. W., & Williams, S. M. (2019). Dietary strategies for weight management. Nature Reviews Endocrinology, 15(5), 273-277.
- 10. Thompson, H. E., & Jones, C. M. (2020). The role of exercise in preventing chronic diseases. Current Opinion in Cardiology, 35(5), 543-549.
- 11. Wilson, A. B., & Davis, M. C. (2021). Sleep and its impact on physical and mental health. Sleep Medicine Reviews, 57, 101435.

Programme	BSc (Honours) Biologic	al Sciences				
Course Name	PRACTICAL BIOINFOR	RMATICS				
Type of	SEC					
Course						
Course Code	UC6SECBTS300					
Course	300					
Level						
Course	Introductory level course f	for gaining	practical ex	perience in l	Bioinformatio	cs and its
Summary	relevance in applied life s	cience rese	arch.			
Semester	VI		Credits		3	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		3	0	0	0	45
Pre- requisites,	None	•			•	
if any						

CO	Ect in 1001	Learning	PO	
No.	Expected Course Outcome in 1921		No	
	different and the			
1	To gain practical knowledge on the types of biological databases	U, A		
2	To retrieve, analyze, interpret and annotate molecular data from various	An, A		
	biological databases			
3	To obtain hands on experience in pairwise and multiple sequence	U,A		
	alignment			
4	To understand evolutionary relationships using tools and software in	An, E, U		
	phylogenetic analysis			
5	To use software and tools for visualizing and understanding molecules and	U, An, A		
	to perform molecular docking			
*Rem	ember(K),Understand(U),Apply(A), Analyse(An),Evaluate(E),Create(C),Skil	$\mathcal{U}(S),$		
	est(I)and Appreciation(Ap)			
Intere	si(1)unu Appreciation(Ap)			

COURSE CONTENT

Module	Units	Course description	Hrs	CO
			45	No.
	1.1	Introduction to Biological Databases. Understanding the importance		
		and role of biological databases in modern research and		
1		bioinformatics.		
		Types of Biological Databases: Overview of various types of	5	1
		databases Introduction to the NCBI database and its importance in		
		bioinformatics.		

I	1.2	PRACTICAL WORKFLOW		
	1.2	Navigating databases GenBank, UniProt, and NCBI to retrieve		
		specific information and understand the data format.	5	1,2
		Retrieving DNA, RNA, and protein sequences from various	0	1,2
		databases		
	1.3	Introduction to different search methods and algorithms used in	3	1,2
	1.5	biological databases, including keyword searches.	5	1,2
	1.4	PRACTICAL WORKFLOW		
	1.4	Functional annotation of genes and proteins using databases such		
			3	2
		as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and	3	2
		Genomes (KEGG).		
	2.1	Introduction to sequence alignment and its significance. Utilizing		
		BLAST (Basic Local Alignment Search Tool) for sequence		
_		similarity searches. Interpreting BLAST results and assessing		_
2		sequence	5	3
		alignments. Pairwise Sequence Alignment and Phylogenetic		
		Analysis		
	2.2	Performing pairwise alignments using BLAST. Aligning DNA,		3
		RNA, or protein sequences and interpreting the results.	3	
	2.3	Introduction to multiple sequence alignment algorithms. Hands-on		
		practice with ClustalW for multiple sequence alignment.		
		Constructing phylogenetic trees using aligned sequences.	5	3,4
	2.4	PRACTICAL WORKFLOW		
		Construct phylogenetic trees using molecular sequence data by		
		tools MEGA or PhyML and interpreting evolutionary relationships.	3	3,4
	21			
	3.1	Introduction to Molecular Visualization. Understanding		
		Molecular Visualization Software.		
		PRACTICAL WORKFLOW	-	_
		Using molecular visualization software RASMOL, PyMOL, SPDB	5	5
		Viewer and Chimera X. To load protein structures, manipulate		
		them in 3D, and visualize different molecular properties.		
-	3.2	Introduction to Computer Aided Drug Design.		
3		Stages in Drug Discovery, Structure based drug design. Molecular	3	5
		Docking		
	3.3	Protein Ligand Docking and Workflow PRACTICAL		
		WORKFLOW		
		Molecular docking using freely available software to predict the	5	5
		binding affinity of small molecules to a protein target.		
4		Teacher Specific Module		
		-	1	1

Teaching	Classroom Procedure (Mode of transaction)				
and	Lectures, group interactions, group seminar, power point presentations				
Learning	Teaching aids used- ICT enabled Audio Visual Presentations, Internet				
Approach	Resources, hands on training of Bioinformatics tools and software				
Assessment	MODEOFASSESSMENT				
Types	A. Continuous Comprehensive Assessment				
	(CCA) Theory Total = 25 marks				
	Test Papers/Assignments/Seminars				
	B. End Semester Examinations				
	Theory Total = 50 marks (Duration 1.5hrs)				
	Multiple Choice Questions $(1X 10) = 10$ marks				
	Short Questions (10 out of 12) X 2= 20 marks				
	Short essays (5 out of 7) X $4=20$ marks				

REFERENCES

- 1. Bajorath, J. (2015). Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery. Royal Society of Chemistry.
- 2. Bandyopadhyay, S. (2014). Chemoinformatics: Theory, Practice, & Products. New Delhi, India: Springer India.
- 3. Chakraborty, A. (2017). Introduction to Chemoinformatics. New Delhi, India: PHI Learning Private Limited.
- 4. Deshmukh, M. V., & Deshmukh, R. V. (2011). Bioinformatics and functional genomics. PHI Learning Pvt. Ltd.
- 5. Gupta, R., & Singh, A. (2017). Computer-Aided Drug Design: Indian Perspective. New Delhi, India: Wiley India Pvt Ltd.
- 6. Jones, A. R., & Pevzner, P. A. (2012). Introduction to Bioinformatics: A Theoretical and Practical Approach. Oxford University Press.
- 7. Leach, A. R., & Gillet, V. J. (2007). An Introduction to Chemoinformatics. Springer.
- 8. Lesk, A. M. (2008). Introduction to bioinformatics. Oxford University Press.
- 9. Mohapatra, S., & Jena, B. K. (2015). Chemoinformatics: Advanced Applications. New Delhi, India: CRC Press.
- 10. Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis. Cold Spring Harbor Laboratory Press.
- 11. Nagarajan, R. (2017). Bioinformatics: High performance parallel computer architectures. CRC Press.
- 12. Pevzner, P. A., & Shamir, R. (2009). Bioinformatics for biologists. Cambridge University Press.
- 13. Sharma, A., & Agarwal, A. (2015). Molecular Docking and Drug Design: Indian Approaches. Jaipur, India: InTechOpen.
- Singh, P., & Jain, S. (2013). Computer-Aided Drug Design: Indian Scenario. Hyderabad, India: I.K. International Publishing House Pvt. Ltd.
- 15. Sundararajan, V. S., & Krishnan, A. (2015). Bioinformatics and computational biology: An introduction.CRC Press.

16. Xiong, J. (2006) Essential Bioinformatics. Cambridge University Press, Cambridge.

SUGGESTEDREADINGS

- 1. Chen, S., Yang, P., & Jiang, F. (2015). A novel approach for protein sequence analysis using deep learning techniques. Bioinformatics, 31(12), 1875-1881.
- 2. Deshmukh, S. K., Srivastava, V. K., &Saxena, A. K. (2014). Molecular docking: challenges, advances and its use in drug discovery perspective. Current drug targets, 15(10), 951-970.
- 3. Gupta, S., Kapoor, P., & Sharma, G. (2018). Recent advances in cheminformatics: Methods, tools, and applications. Bioinformatics, 34(6), 997-1012.
- Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of medicinal chemistry, 47(7), 1750-1759.
- 5. Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of medicinal chemistry, 46(4), 499-511.
- 6. Kitchen, D. B., Decornez, H., Furr, J. R., &Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, 3(11), 935-949.
- Miller, R. K., Anderson, N. J., & Brown, E. F. (2013). Comparative analysis of sequence alignment algorithms for bioinformatics applications. Bioinformatics, 29(4), 435-443.
- 8. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson,
- A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14), 1639-1662.
- 9. Morris, G. M., Huey, R., & Olson, A. J. (2009). Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics, 24(1), 8.14.1-8.14.40.
- 10. Smith, J. D., Johnson, A. B., & Williams, C. D. (2010). Advances in bioinformatics sequence analysis: A comprehensive review. Bioinformatics, 25(15), 1901-1910.
- 11. Trott, O., & Olson, A. J. (2010). AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
- 12. Wang, L., Li, W., & Zhang, X. S. (2016). Bioinformatics analysis of protein-protein interactions using cheminformatic tools. Bioinformatics, 32(7), 1018-1025.

Programme	BSc (Honours) Biological Sciences						
Course Name	MICROBIAL FOOD SAFETY						
Type of	DCC						
Course							
Course Code	UC7DCCBTS400						
Course Level	400						
Course	The course will enable students to apply the learning of microbiology concepts						
Summary	toward the role of microbes in food production. The role of microbes in food spoilage,					spoilage,	
	preservation and various foo	d borne dis	eases will b	e discussed.	Students wi	ll be able	
	to comprehend the micro	biological	quality co	ontrol and	foodborne	illnesses	
	investigation procedures for	ensuring for	ood safety a	nd hygiene;	to understan	d current	
	national and international fo	od safety ru	les and regu	lations; to ki	now the requ	irements	
	and components of food safe	ety manage	ment systen	n (FSMS)			
Semester	VII		Credits		4	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
		3	0	1	0	75	
Pre-requisites,	e-requisites, Est. in 1921						
if any		- 11					

CO	Expected Course Outcome	Learning	PO			
No.		Domains*	No			
1	Developing an understanding about the concept, importance and scope of Food microbiology and food safety	U	2			
2	Learners will be able to recognize different types of food safety hazards, including biological, chemical, and physical hazards	U,A	2,3,9,10			
3	Students will be able to find the characteristics, related food, and symptoms of each food safety hazards	U,A, An, S	2,3,9,10			
3	Learners will be able to implement strategies for ensuring food safety and quality in food processing and production	U, A, An, E	2,3,9,10			
4	Helps to examine the appropriateness of food safety management systems in the current job market.	U, A, An, E	2,3,9,10			
5	Learners can analyze risks in agri-food value chains	U,A, An, S	2,3,9,10			
6	Learners can apply generic principles of quality management to specific situations of food quality assurance management.	U, A, An	2,3,9,10			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill(S), Interest(I) and Appreciation (Ap)					

COURSE CONTENT

Module	Unit	Content for Class room transaction (Units) Course description	Hrs 45	CO No.
		Overview and Basic Concepts of Food safety	8	100
	1.1	General concepts of food safety: adulteration, filth, microorganisms, chemical additives. Types of adulteration in common foods, impact on human health and tests to detect common adulterants.	2	1
	1.2	Food Safety issues and factors affecting food safety (Physical, chemical and microbiological hazards)	1	1,2
1	1.3	 Factors influencing microbial growth in foods: intrinsic and extrinsic parameters. Intrinsic parameters of food that affect microbial growth: pH, water activity, oxidation reduction potential, nutrient content, antimicrobial constituents & biological structures. 	3	1,2
	1.4	Extrinsic parameters of food that affect microbial growth: relative humidity, storage temperature, gaseous environment.	2	1,2
		Microbiological hazards in food	12	
	2.1	Foodborne diseases: infections, poisoning, toxico-infections	3	3
	2.2	Sources and transmission of bacteria in foods: human, animal, and environmental reservoirs; cross- contamination;	3	3
	2.3	Salmonella, Clostridium botulinum, Vibrio, Hepatitis A, Campylobacter jejuni, Listeria monocytogenes. Emerging foodborne pathogens: E. coli O157.	4	3
	2.4	Fungal Toxins: Aflatoxin, Ochratoxin A, Fumonisins	2	3
2		Microbial indicators of food safety and quality	10	
	2.5	Enumeration of bacteria from food using different growth media, plating techniques.	3	3
	2.6	Coliforms- detection & enumeration, coliform criteria & standards	2	3
	2.7	Detection of Salmonella in food	1	3
	2.8	Risk associated with ready to eat food (RTF).	1	3
3		Food Quality Regulations and Food safety management systems	15	
	3.1	Government regulatory agencies and food policies: Food Safety and standards authority of India(FSSAI)	2	4,5
	3.2	United States Food and Drug Administration (US-FDA)	1	4

3.3	Codex alimentarius Commission	1	4
3.4	Introduction to Food Safety Management System (FSMS) ISO:	3	4
	22000		

		Food Safety Management Systems – Requirements, Goals and use of		
	3.5	FSMS (ISO 22000)	3	4
	0.0	Methodology for Developing an ISO 22000 and HACCP	C	
		HACCP - A global requirement for food safety assurance		
	3.6	Hazard analysis criteria control points (HACCP) system for ensuring	2	4,5
		food safety. Guidelines in the application of HACCP system		,
		HACCP principles - Conduct a hazard analysis, CCP identification,		
		establish critical limits for each CCP, establish CCP monitoring		
	3.7	procedures, establish corrective actions procedures, establish procedures	3	4,5
		for HACCP verification and validation, documenting the HACCP		
		Program		
		PRACTICAL	30	
	4.1	1. Detection of adulterants in milk		
		2. Detection of adulterants in milk based products Detection of		
		adulterants in food grains and their products.		
		3. Enumerate bacteria from food samples in different growth media		
		using dilution plating technique		
4		4. Enumerate coliforms from water / food Detection of salmonella		6
		from food		
		5. Conduct survey on hygienic and sanitary condition of the quality		
		of food and apply the guidelines for food safety and quality		
		systems.		
		6. Report on HACCP for Food industry		
5		Teacher Specific Module		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Lecture, group interaction, individual assignments, seminar, presentations
Approach	A visit to laboratories/ food business units to see the function and
	Operational procedures
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA) Theory
	Total=25 marks
	Quiz/ Test Papers/ seminars
Assessment Types	Practical Total 15 marks
	Lab performance/ record/ field visit report
	B. End Semester Examination
	Theory Total 50 marks, Duration 1.5 hrs
	Fill in the blanks $-(10 \times 1) = 10$ marks
	Short questions- $(10 \text{ out of } 12) \ge 2 = 20 \text{ marks Short}$
	Essays (5 out of 7) x $4 = 20$ marks
	Practicals Total 35 marks Duration- 2 hrs
	Record 10 marks , Examination 25 marks:
	Performance of experiments 16 marks
	Viva-4 marks, research institute visit report- 5 marks

- 1. Adams, M. R., & Moss, M. O. (2000). Food microbiology. Royal society of chemistry.
- 2. Berlanga, M. (2005). Food Microbiology: An Introduction. Thomas J. Montville, Karl R. Matthews (eds). International Microbiology, 8(1), 74-75.
- 3. Bioprocess Technology: P T Kalaichelvan, I Arul Pandy : MJP Publishers.
- Bacteriological Analytical Manual Chapter 3 Reference: Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Chapter 4; Microbiological analysis –Manual FSSAI, India - pp28-36; Reference: Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Pp51-
- 5. Doyle, M. P., Diez-Gonzalez, F., & Hill, C. (Eds.). (2020). Food microbiology: fundamentals and frontiers. John Wiley & Sons.
- 6. Frazier, W. C., & Westhoff, D. C. (1978). Food Microbiology; TATA McGraw-Hill Pub. Co. Ltd. New Delhi.
- 7. James M.Jay. "Modern Food Microbiology", CBS Publishers & Distributors, 1987.
- 8. Lund, B. M., Baird-Parker, T. C., & Gould, G. W. (Eds.). (2000). Microbiological safety and quality of food (Vol. 1). Springer Science & Business Media.
- 9. Piefzer F.M. "Food Microbiology" Academic Press, 1989
- 10. Potten N.M. "Food Science" The AVL Publishing Co. 2002
- 11. Roger A., Gorden B., and John T., "Food Biotechnology", 1989
- 12. Review- The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health 2010, A. Cencic and W. Chingwaru Nutrients 2010, 2, 611-625

SUGGESTED READINGS

- 1. Baltz, R. H., Demain, A. L., & Davies, J. E. (2010). Manual of industrial microbiology and biotechnology. American Society for Microbiology Press.
- 2. Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: fundamentals of applied microbiology. Cambridge University Press.
- 3. Handbook of Analysis and Quality Control for Fruit and Vegetable Products (English, Hardcover, Ranganna S.)
- 4. Industrial microbiology by Patel A.H. (2007). New Age International Publishers.
- 5. Alcamo by Pommerville J.C. (2011).
- 6. Quality Control in the Food Industry, Volume 2 edited by S Herschdoerfer.
- 7. Biotechnology: Expanding Horizons by Singh B.D. (2008). Kalyani Publishers, India.
- General Microbiology by Stanier R.Y., Ingraham J.L., Wheelis M.L. and Painter R.R. (2008). Macmilian Press London.

Programme	BSc (Honours) Biol	ogical	Sciences				
Course Name	BIOTECHNOLOGY IN CLINICAL DIAGNOSIS						
Type of	DCC						
Course							
Course Code	UC7DCCBTS401						
Course	400						
L evel							
Course	Biotechnology in clinical diagnosis is a broad field that deals with the						
Summary	exploitation of living organisms to develop products beneficial for sustainable						
	development. It har	nesses	s cellular ar	nd molecula	r processes to	o develop	products
	and technologies th	at cou	ld help in i	improving h	uman life on	earth. Th	e course
	will enable students	s to ap	ply the lear	rning of bio	technology ir	the healt	h sector.
	Students will be exposed to various techniques such as Recombinant DNA						
	Technology, Poly	meras	e Chain	Reaction	(PCR) and	Enzyme	e-Linked
	Immunosorbent As	ssay (ELISA), e	etc. that he	lps in the ea	arly diagr	nosis of
	diseases						
Semester	VII	_		Credits		4	Total
Course	Learning Approach	ΕS	Lecture	Tutorial	Practical	Others	s Hours
Details		X	4	0	0	0	60
Pre-	Student with basic kn	owled	ge in mole	cular biolog	y, Foundation	ns in cell b	oiology,
requisites, if	biochemistry and biotechnology						
any		//		7/			

CO		Learning				
No.	Expected Course Outcome	Domain*	PO No			
1	Developing an understanding about the concept, importance and	U	2			
	scope of Biotechnology in diagnosis of diseases					
2	Familiarize students with molecular diagnostic technologies.	U, A	2,3,9,10			
3	Enhance understanding of computational methods for analyzing	U	2,3,9,10			
	molecular diagnostic data.					
4	Develop skills to interpret molecular test results for clinical	U, A, I, S	2,3,9,10			
	decision-making					
5	Students will be able to know how to use the main methodologies	U, A, An, I,	2,3,9,10			
	and instruments that characterize biotechnologies for the S					
	prevention, diagnosis and treatment of human diseases					
*Rem	ember(K), Understand (U), Apply(A), Analyse (An), Evaluate(E), Create(C),Skill(S),				
Intere	est(I) and Appreciation(Ap)					

COURSE CONTENT

Module	Unit	Course description	Hrs (60)	CO No.
		Microbes and parasites:	10	
	1.1	Historical introduction	2	1
		Bacteria, Fungi, Viruses, Protozoa,		
1	1.2	Helminthes and Arthropods, Prions;	4	
	1.3	Host-parasite relationship; Infection-mode of transmission in infection, factors predisposing to microbial pathogenicity, types of infectious diseases	4	2,3
		Methods of Disease Diagnosis:	20	
	2.1	Sampling site-normally sterile and with normal microflora; Sample collection-method of collection, transport and processing of samples, interpretation of results;	2	2,3,4
	2.2	Diagnostic methods- cultured: microscopy, microbial antigen; non- cultured: PCR based microbial typing: 2	2	2,3,4
	2.3	Eubacterial identification based on 16s rRNA sequences	2	2,3,4
	2.4	Amplified ribosomal DNA Restriction analysis(ARDRA)-	2	2,3,4
2	2.5	Culture independent analysis of bacteria-DGGE and TRFLP	2	2,3,4
	2.6	Molecular diagnosis of fungal pathogens based on 18s rRNA sequences	5	2,3,4
	2.7	Detection of viral pathogens through PCR	3	2,3,4
	2.8	Monoclonal antibodies in therapy.	2	2,3,4
		Diagnosis of Infections :	18	
3	3.1	Bacteria- <i>Streptococcus</i> , Coliforms, <i>Salmonella</i> , <i>Shigella</i> , <i>Vibrio</i> and <i>Mycobacterium</i> ;	8	5
	3.2	Fungi-Major fungal diseases, Dermatophytoses, Candidiosis and Aspergillosis	5	5
	3.3	DNA and RNA Viruses- POX virus, Rhabdo Virus, Hepatitis Virus and Retro Virus	5	5
		Molecular Diagnostics in Genetic and Inherited Disorders	12	5
4	4.1	Genetic testing and inherited diseases on-Invasive Prenatal testing (NIPT) and reproductive genetics,	8	5
	4.2	Molecular diagnostics in rare genetic disorders	4	5
5		Teacher Specific Module		

	Classroom Procedure (Mode of transaction)			
Teaching and	Lectures, ICT enabled classes, Group discussions, seminar			
Learning	presentations, case studies and activities			
Approach	Note: Teaching aids like photographs, models, videos, short films,			
	documentaries related to the topic may be used			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
Assessment	Theory Total=30marks			
Types	Quiz/ Test Papers/ Seminar/ Case studies			
	B. Semester End examination			
	Theory Total 70 marks, Duration 2 hrs			
	Fill in the blanks $-(10 \text{ x } 1) = 10 \text{ Marks}$			
	Short questions- $(10 \text{ out of } 12) \ge 30 \text{ Marks},$			
	Short Essays (6 out of 8) x $5 = 30$ Marks,			

REFERENCES

- 1. Cassimeris, L., Viswanath, R., Lingappa, V.R., & Jones, G.P. (2016). Lewin's Cells. London: Bartlett Publishers.
- 2. Clark, D.P., & Pazdernik, N.J. (Eds.). (2001). Biotechnology- Applying genetic revolution. New York: Elsevier.
- 3. Cooper, G.M., & Hausman, R.E. (2013). The Cell A molecular Approach. Washington: ASM Press.
- 4. Grody, W. W., Nakamura, R. M., Strom, C. M., & Kiechle, F. L. (Eds.). (2017). Molecular Diagnostics: Techniques and Applications for the Clinical Laboratory.
- 5. Jain, K.K. (Ed.). (2011). The Handbook of Biomarkers.

Programme	BSc (Honours) Biologica	l Sciences					
Course Name	BIOSAFETY, BIOETHI	BIOSAFETY, BIOETHICS AND IPR					
Type of	DCC	DCC					
Course							
Course Code	UC7DCCBTS402						
Course	400						
Level							
Course	To provide a comprehe	nsive unde	rstanding o	f the ethical,	legal, and re	egulatory	
Summary	aspects associated with	the field of	biosafety a	and bioethics	s, while also	equipping	
	students with knowledg	ge about into	ellectual pro	operty rights	and their imp	olications	
	in the biotechnology se	ctor.					
Semester	VII		Credits		4	Total	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Details		4	0	0	0	60	
Pre- requisites,	NO	1				1	
if any							

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Gain a comprehensive understanding of the concept of biosafety and its importance in scientific research and healthcare.	U, K	2,3,10
2	Acquire the knowledge and skills to identify and manage potential risks and hazards associated with biological materials.	S, E	2,3,10
3	Develop the ability to design and implement biosafety protocols and measures to ensure a safe working environment in laboratory settings.	A, An	2,3,10
4	Comply with national and international regulations and guidelines governing biosafety.	U, K	2,3,10
5	Identify and assess the potential risks associated with genetically modified organisms (GMOs) and their impact on human health and the environment.	U, An, A, E	2,3,10
6	Develop a comprehensive understanding of ethical principles and theories applicable to biological research and healthcare.	U, K	2,3,10
7	Demonstrate ethical conduct and decision-making in scientific research.	A, An, E	2,3,10
8	Understand the significance of intellectual property rights in the field of biosciences.	U, K	2,3,10
9	Understand guidelines to protect biological inventions	U,K	2,3,10
	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Createst (I) and Appreciation (Ap)	te (C), Skill (S	'),

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			60	No.
		BIOSAFETY: INTRODUCTION AND	12	
1	1.1	GUIDELINES		- 1
1	1.1	Introduction, biosafety issues; Biological Safety Cabinets & their	2	1
	1.0	types		1.0
	1.2	Primary Containment for Biohazards	2	1,2
	1.3	Biosafety Levels of Specific Microorganisms.	2	2,3
	1.4	Biosafety guidelines and regulations (National and	3	3,4
		International);		
		Regulatory bodies of India-RCGM and GEAC.		
	1.5	GMOs/LMOs- Concerns and Challenges; Role of Institutional	3	4,5
		Biosafety Committees (IBSC), RCGM, GEAC etc		
		RISK ANALYSIS AND GUIDELINES	8	
	2.1	Environmental release of GMOs; Risk Analysis; Risk Assessment;	4	5
		Risk management and communication; 7921		
2	2.2	Overview of International Agreements - Cartagena Protocol.	4	4
		INTRODUCTION TO BIOETHICS & ETHICAL	15	
		PRINCIPLES IN BIOLOGICAL RESEARCH		
	3.1	Overview of bioethics, ethical principles, such as autonomy,	3	6
3		beneficence, non-maleficence, and justice		
	3.2	Ethical Issues in Healthcare- such as end-of-life decisions, genetic	3	6,7
		testing, and resource allocation.		
		ethical challenges related to patient autonomy, confidentiality, and		
		access to healthcare		
	3.3	Ethical Conduct in Scientific Research- importance of integrity,	5	6,7
		honesty, and transparency in scientific research		
	3.4	Ethical implications of genetic engineering, stem cell research, and	4	6,7
		reproductive technologies		
		INTRODUCTION TO INTELLECTUAL PROPERTY	15	
		Introduction to Intellectual Property and History. Patents,	6	8
		Trademarks, Copyright, Trade secrets, Trade		
	4.1	dress, Industrial Design and Traditional Knowledge, Geographical		
		Indications		
	4.2	Importance of IPR – patentable and non-patentable – patenting life	4	8
	4.3	Legal protection of biotechnological inventions – World	5	8,9
	4.3		3	0,9
		Intellectual Property, Rights Organization (WIPO),	10	<u> </u>
4		GRANT OF PATENT, PATENTING AUTHORITIES AND TREATIES	10	

	4.1	Types of patent applications: provisional and complete specifications	3	8
	4.2	An introduction to Patent Filing Procedures; Patent licensing and agreement; Patent infringement, Rights and Duties of patent owner. Basmati rice patent issue: a Case study.	3	8
	4.3	Agreements and Treaties: GATT, TRIPS Agreements; WIPO Treaties; Budapest Treaty on international recognition of the deposit of microorganisms; UPOV & Brene conventions; Patent Co-operation Treaty (PCT); Indian Patent Act 1970 & recent amendments	4	9
5		Teacher specific module		

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Classroom lectures, group interactions, group seminar, power point presentations,		
Approach	Article and general reviews		
	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources		
MODE OF ASSESSMENT			
Assessment A. Continuous Comprehensive Assessment (CCA) Theory			
Types	Total = 30 marks		
	Test Papers/Assignments/Seminars		
	B. End Semester examination		
	Theory Total = 70 marks (Duration 2 hrs) Multiple		
	Choice Questions $(1X \ 10) = 10$ marks Short Questions (10		
	out of 12) X 3= 30 marks		
	Short essays (6 out of 8) X $5 = 30$ marks		

- 1. Beauchamp, T. L., & Childress, J. F. (2019). Principles of biomedical ethics. Oxford University Press.
- 2. Finkelman, L. (2018). Intellectual property and biomedical ethics. Oxford University Press.
- 3. Narayanan, P. (2001). Intellectual Property Laws. Eastern Law House.
- 4. Paul, M. (2009). Intellectual Property Laws. Allahabad Law Agency.
- 5. Resnik, D. B. (2015). Ethical issues in biomedical research: A guide to understanding the causes, course, consequences, and solutions. John Wiley & Sons.
- 6. Smith, J. A., & Johnson, R. B. (2020). Biosafety considerations in gene editing research. Journal of Biotechnology, 15(2), 123-136. doi: 10.1016/j.jbiotec.2020.01.008

SUGGESTED READINGS

- 1. Brown, T. A. (Year). Gene cloning: An Introduction. Chapman and Hall Pub.
- 2. Johnson, N. (2017). Emerging ethical issues in neuroscience. AMA Journal of Ethics, 19(9), 877- 884.
- 3. Macklin, R. (2014). Bioethics, public moral argument, and social responsibility.

Perspectives in Biology and Medicine, 57(1), 1-17.

- 4. Old, R. W., & Primrose, S. B. (Year). Principles of gene manipulation. Blackwell Scientific Publishers.
- 5. http://www.cbd.int/biosafety/background.shtml
- 6. http://www.cdc.gov/OD/ohs/symp5/jyrtext.htm
- 7. http://www.ipr.co.uk/IP_conventions/patent_cooperation_treaty.html
- 8. http://www.w3.org/IPR/
- 9. http://www.wipo.int/portal/index.html.en
- 10. https://www.wipo.int/treaties/en/registration/budapest/
- 11. www.iprlawindia.org/ 31k
- 12. www.patentoffice.nic.in
- 13. http://web.princeton.edu/sites/ehs/biosafety/biosafetypage/section3.html

Programme	BSc (Honours) Biologic	al Sciences					
Course Name	PLANT PHYSIOLOGY	PLANT PHYSIOLOGY AND PHYTOCHEMICAL TECHNIQUES					
Typeof	DCE						
Course							
Course Code	UC7DCEBTS400						
Course	400						
Level							
Course	Introduce students to the	basics of	plant cell i	ts physiolog	y of growth,	function, and	
Summary	development and its inter	action with	environm	ent. Students	s also acquir	e skills on the	
	basic phytochemical techn	niques.					
Semester	VII		Credits		4	Total	
Course		Lecture	Tutorial	Practical	Others	Hours	
Details	Learning Approach400060						
Pre-							
requisites, if							
any							

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PO No				
No.		Domains*					
1	CO1: Acquire knowledge on basics on plant cell and its interaction with	K,U	2,3,10				
	environment						
2	CO2: To be aware of physiological mechanisms of plant growth,	An, E	2,3,10				
	function, and development						
3	CO3: Recognize and describe how plants respond to their environment	U, E	2,3,10				
4	CO4: Knowledge and Skills on phytochemical techniques	A, An, S	2,3,10				
*Reme	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),						
Interes	t (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			60	No.
		Transport and Translocation of Water and solutes	15	
	1.1	Plant cell: Overview of a plant cell, plant cell organelles, endomembrane systems,	5	
		cell wall, plant tissues: simple and complex tissues.		1
	1.2	Water and Plant cell: Water potential, Water absorption and transport in plants, transpiration Mineral Nutrition: Essential and Non- essential nutrients, its deficiencies and	5	1,2
1		symptoms, Assimilation of mineral nutrients (N,P, S), Biological nitrogen fixation		

1				
	1.3	Solute transport: Passive and active transport, Membrane		
		transport processes and proteins Growth hormones: Auxins,	~	2
		Gibberrellins, Cytokinin, Ethylene, Abscisic acid,	5	2
		Brassinosteroids (discovery, effects, biosynthesis		
2		Plant physiology	15	
	2.1	Photosynthesis: Light Reaction, Organisation of		
		photosynthetic apparatus,		
		Light absorbing antenna systems,		
		Mechanism of electron transport and ATP synthesis, Repair and	6	2
		Regulation of photosynthetic machinery		
	2.2	Photosynthesis: Dark reaction, Calvin-Benson cycle and		
		its regulation, C2, C4		
		and CAM cycle, Accumulation and partitioning of	6	2
		photosynthates,	0	-
		Mobilisation of Starch, Surcose biosynthesis, Sugar translocation	1	
		in Phloem, Phloem loading		
		and unloading		
	2.3	Respiration: Glycolysis, PPP, citric acid cycle, ETC,	3	2
		Environmental factors that alter Respiration	_	
3		Secondary metabolites and Plant defense	5	
	3.1	Introduction, terpenes, phenolic compounds,	5	
		Nitrogen containing compounds, plant defence against pathogens		
		Photo- periodism and photomorphogenesis, Plant	15	
		movements and stress physiology		
	4.2	Photoperiodism in short day and long day plants,		
		Phytochrome induced responses, proteins, signaling pa	5	
4		thways, cryptochrome induced photo-responses in plants	_	
_		Plant movements: Movement of locomotion, Movement of	2	3
		curvature, Hygroscopic movements	_	
	4.3	Stress physiology: Physiological basis of abiotic stress		
		tolerance, Plants' responses to drought and salinity stress,	8	
		Escape and tolerance mechanism, Physiological and	Ŭ	
		biochemical changes associated with tolerance.		
		Phyto-chemical techniques		
		Methods of Extraction, characterization and purification of	15	3
		secondary metabolites(any one case study)	••	5
5		Teacher Specific Module		
-		· · · · · · · · · · · ·		

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Lectures, group interactions, group seminar, power point presentations Teaching			
Approach	aids used- ICT enabled Audio Visual Presentations, Internet Resources Hands on			
	training on phytochemical techniques Industrial visit			

	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
Assessment	Theory Total = 30 marks			
Types	Test Papers/Assignments/Seminars			
	B. End Semester Examinations			
	Theory Total = 70 marks (Duration 2 hrs) Multiple			
	Choice Questions $(1X \ 10) = 10$ marks Short Questions			
	(10 out of 12) X 3 = 30 marks			
	Short essays (6 out of 8) X $5 = 30$ marks			

- 1. Taiz, L., Zeiger, E., (2010). Plant Physiology. Sinauer Associates Inc., U.S.A. 5th Edition.
- 2. Hopkins, W.G., Huner, N.P., (2009). Introduction to Plant Physiology. John Wiley & Sons, U.S.A. 4th Edition.
- 3. Bajracharya, D., (1999). Experiments in Plant Physiology- A Laboratory Manual. Narosa Publishing House, New Delhi.
- 4. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGrawHill Publishing Co. Ltd. New Delhi. 3rd edition.
- 5. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.
- Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995). Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.

Programme	BSc (Honours) Biological Sc	ciences				
Course Name	CANCER BIOLOGY					
Type of	DCE					
Course						
Course Code	UC7DCEBTS401					
Course	400					
Level						
Course	By learning Cancer biology t	the learner	will be train	ed in scientif	fic research	methods
Summary	and learn the techniques use	d in cell an	d molecular	r biology and	l pathology	. Student
	will study the biology of dise	ase, tumou	r biology, ir	nmunology,	molecular o	oncology,
	haematological malignancy,	plus diagno	stic and the	rapeutic tech	niques for c	ancer.
Semester	VIII		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		4	0	0	0	60
Pre-requisites,						•
if any			0.01			

COURSE OUTCOMES

CO No.	Expected Course Outcome	Learning Domains	PO No
		*	
1	Comprehend the basics of cancer and identify with the concept of cancer as a disease and the process of carcinogenesis	U	2
2	Perform the basic and the advanced molecular techniques used in cancer diagnostics and interpret the results.	U, A	2
3	Choose advanced studies in the field of oncology	U	2,3,9,10
4	Make objective decisions about the harmful effects of cancer causing agents and create awareness about them among the common man	U,A	2,3,9,10
5	Demonstrate core knowledge of the cellular targets and molecular mechanisms of traditional and novel cancer therapies.	U,A	2,3,9,10
	ember(K), Understand (U),Apply(A), Analyse (An),Evaluate(E),Create(C),S st(I) and Appreciation(Ap)	Skill(S),	

COURSE CONTENT

Content for Class room transaction (Units)

Module	Units	Course description	Hrs	СО
			60	No.
		Fundamentals of cancer biology:	15	
		Introduction to Cancer Biology, Tumor suppressor		

	1.1	5	1	
1				
	1.2	Different forms of cancers	4	
		Cancer screening and early detection, Detection using		
	1.3	biochemical assays, tumor markers, molecular tools for	6	2,3
		early diagnosis of cancer		
		Principles of carcinogenesis:	15	
		Theory of Carcinogenesis:		
	2.1	Chemical carcinogenesis, principles of physical	6	2,3,4
2		carcinogenesis,		
	2.2	X-ray radiation-mechanisms of radiation carcinogenesis,	5	2,3,4
	2.3	Diet and cancer.	4	2,3,4
		Principles of molecular cell biology of cancer:	15	2,3,4
	3.1	Signal targets and cancer, activation of kinases;	3	2,3,4
	3.2	Oncogenes, identification of oncogenes, retroviruses and	4	2,3,4
		oncogenes		
3	3.3	Oncogenes/proto oncogene activity,	4	5
	3.4	Growth factors related to transformation, Telomerases	4	5
		Principles of cancer metastasis :	15	5
	4.1	Clinical significances of invasion	2	5
	4.2	Metastatic cascade	2	5
	4.3	Basement membrane disruption, proteinase and tumor cell	3	5
		invasion.		
4		New molecules for cancer therapy:		
	4.4	Different forms of therapy, chemotherapy, radiation therapy,	4	5
		detection of cancers, prediction of aggressiveness of cancer,		
	4.5	detection of cancers, prediction of aggressiveness of cancer,Advances in cancer detection.	4	5

Teaching	Classroom Procedure (Mode of transaction)
and	Lectures, ICT enabled classes, Group discussions, seminar presentations and activities
Learning	
Approach	
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
Assessment	Theory Total=30marks
Types	Quiz/Test Papers/ Seminar/Activity Report (on behavioral study)
	B. Semester End examination
	Theory Total 70 marks, Duration 2 hrs
	Multiple Choice Questions $-(10 \text{ x } 1) = 10 \text{ Marks}$
	Short questions- $(10 \text{ out of } 12) \ge 3 = 30 \text{ Marks},$
	Short Essays (6 out of 8) x $5 = 30$ Marks

REFERENCES

- 1. Cassimeris, L., Viswanath R. Lingappa, & Plopper Jones, G. (Eds.). (2011). Lewin's Cells. London: Bartlett Publishers.
- 2. Clark, D. P., & Pazdernik, N. J. (2009). Biotechnology- Applying genetic revolution. New York: Elsevier.
- 3. Cooper, G. M., & Hausman, R. E. (Eds.). (2000). The Cell A molecular Approach. Washington: ASM Press.
- 4. Dunmock, N. J., & Primrose, S. B. (2001). Introduction to Modern Virology. Oxford: Blackwell Scientific Publications.
- 5. Maly, B. W. J. (1985). Virology A Practical Approach. Oxford: IRL Press.
- 6. Weinberg, R. A. (2013). The Biology of Cancer. New York, NY: Garland Science.

Programme	BSc (Honors) B	iological Sciences					
Course Name	CLINICAL RES	CLINICAL RESEARCH AND PHARMACOVIGILANCE					
Type of	DCE						
Course							
Course Code	UC7DCEBTS40	02					
Course	400						
Level							
Course	The introductor	y course provides a co	mprehensive	e overview of the key	concepts and		
Summary	practices in cli	inical research and	pharmacovig	gilance. It covers th	ne basics of		
	designing and	conducting clinical th	rials, unders	tanding ethical cons	iderations in		
	research, monite	oring and reporting ad	dverse drug	reactions. Students w	ill also learn		
	about the regu	latory requirements	for drug d	evelopment and po	st-marketing		
	surveillance. Th	e importance of phar	macovigilan	ce in ensuring drug s	afety and the		
	effectiveness in	communicating and c	ollaborating	with healthcare profe	essionals and		
	regulatory agen	cies are learned.					
Semester	VII	Credits		4	Total		
Course	Learning	Lecture Tutorial	Practical	Others	Hours		
Details	Approach	4 0	0	0	60		
Pre- requisites,	None				i		
if any			1000				

COURSE OUTCOMES (CO)

CO		Learning	PO
No.	Expected Course Outcome	Domains	No
	TRUTH SUZAL MANGE TO 3	*	
1	To observe understand and evaluate research communications	U,E	2,3,10
2	To understand the basic principles and ethical considerations of	U,K	2,3,10
	clinical research.		
3	To evaluate clinical research studies and assess the validity of their	U,A	2,3,10
	findings.		
4	To gain familiarity with the various stages of drug development	U,K	2,3,10
5	To understand the adverse effects of medicine on a patient through clinical	U,E	2,3,10
	research and pharmacogenomics		
6	To gain knowledge of the regulatory requirements and guidelines	K,An	2,3,10
	governing clinical research and pharmacovigilance.		
*Reme	mber(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), S	kill(S),	
Interes	st(I)and Appreciation(Ap)		

COURSE CONTENT

Content for Classroom transaction (Units)

Module Units Course description		Content for Classroom transaction (Units)	Hrs	CO
mouule	Cinto		60	No.
1	1.1	Overview of research methods. Planning a research project, Literature searching and systematic reviews. Quantitative and qualitative research methods,	5	1
1	1.2	Understanding data collection and analysis, critical appraisal of published research articles. Presentation skills (written and oral).	5	1
	1.3	Sponsor's Perspective: Managing a Clinical Trial, Selecting Investigators and Monitors Maintaining and Managing Essential Documents (e.g. FDA Form 1572); Case Report Form Data. Transmission and Generation of the Clinical Study Report.	5	1,2
	2.1	OverviewofMedicinalProductResearchandDevelopmentDrugDiscovery andPre- Clinical Research	5	2,3
2	2.2	The Clinical Research and New Drug Application Approval Process; the Biologics Research, Development, and Licensing Process; Medical Device Research, Development, and Marketing.	5	2,3
	2.3	Drug Development Processes: History of drug development, Discovery and selection of compounds for human investigation and toxicological requirements.	5	4
3	3.1	Pharmacokinetics and pharmacodynamics,	5	4,5
	3.2	Pharmacogenomics and its application in clinical research.	5	4,5
	4.1	Regulatory Affairs and Pharmacovigilance, Regulatory requirements in Europe, the USA and Japan, Regulatory requirements for biotechnology products, medicinal devices and veterinary products	5	6
4	4.2		5	6
	4.3	Health economics; Pharmacoeconomics and quality of life assessment, Safety reporting. Methods of monitoring drug safety, responding to drug safety alerts, Post marketing surveillance.	5	5,6
5		Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)
and	Lectures, group interactions, group seminar, power point presentations
Learning	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
Approach	
Assessment	MODE OF ASSESSMENT
Types	A. Continuous Comprehensive Assessment (CCA) Theory
	Total = 30 marks
	Test Papers/Assignments/Seminars

B. End Semester Examinations
Theory Total = 70 marks (Duration 2 hrs)
Multiple Choice Questions $-(10 \text{ x } 1) = 10 \text{ Marks}$
Short questions- $(10 \text{ out of } 12) \ge 30 \text{ Marks},$
Short Essays (6 out of 8) x $5 = 30$ Marks

- 1. Brown, A. M., & Wilson, P. (2016). Introduction to pharmacovigilance: Principles and practice. American Psychological Association.
- 2. Davis, J. M., & Wilson, R. (2016). Principles and practice of pharmacovigilance in clinical research. American Psychological Association.
- 3. Johnson, R. F., & Smith, L. K. (2017). Pharmacogenomics: An introduction and clinical perspective. American Psychological Association.
- 4. Jones, L. R., & Patel, S. (2018). Clinical research methods in pharmacogenomics. American Psychological Association.
- 5. Kothari, C. R. (2004). Research methodology: Methods and techniques (2nd ed.). New Age International (P) Ltd.
- 6. Kumar, R. (2014). Research methodology: A step-by-step guide for beginners (4th ed.). SAGE Publications India.
- 7. Patel, K. M., & Johnson, T. (2019). Pharmacovigilance: Principles and practice. American Psychological Association.
- 8. Smith, J. R., & Davis, M. (Eds.). (2018). Clinical research in pharmacogenomics: Methods and applications. American Psychological Association.
- 9. Brown, S. D., & Jones, T. (Eds.). (2015). Handbook of clinical research methods and applications. American Psychological Association.

- 1. Innocenti, F. (2005). Pharmacogenomics: Methods and Applications. Medical.
- 2. Johnson, A. L., & Smith, P. (2019). Pharmacogenomics and drug development: An introduction. American Psychological Association.
- 3. Patel, R. S., & Brown, M. (2018). Pharmacovigilance in clinical research: Principles and practice. American Psychological Association.
- 4. Rychlik, R. (2002). Strategies in Pharmacoeconomics and Outcomes Research. Medical.
- 5. Smith, K. T., & Johnson, L. (2017). Pharmacogenomics and personalized medicine: Methods and applications. American Psychological Association.
- 6. Vogenberg, F. R. (2000). Introduction to Applied Pharmacoeconomics. Medical.

Programme	BSc (Honours) Biologica	al Sciences	;			
Course Name	STRESS PHYSIOLOGY					
Type of	DCE					
Course						
Course Code	UC7DCEBTS403					
Course	400					
Level						
Course	This course provides a	se provides an in-depth exploration of the physiological mechanisms				
Summary	animals use to respond	to stress. I	t covers the	e cellular, sy	stemic, and	behavioral
	responses to different typ	bes of stress	sors and exa	mines the in	npact of stres	s on health
	and disease. This cou	rse also e	explores th	e physiolog	gical mechai	nisms and
	responses of plants and	microbes t	o various b	iotic and abi	otic stressors	s. It covers
	the molecular, cellular, a	and systemic adaptations that enable plants and microbe to				
	survive and thrive under	er stress conditions.				
Semester	VII		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		4	0	0	0	60
Pre- requisites,	Es	st. in	1921			
if any		<u></u>	1			

COURSE OUTCOMES

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Understand the fundamental principles of stress physiology	U	2,3,10
	in animals, plants and microbes		
2	Able to learn about the molecular and cellular mechanisms underlying stress responses.	U	2,3,10
		•	2210
3	Analyze physiological adaptations to various stressors in animals ,plant and microbes	An	2,3,10
4	Evaluate strategies used by organisms to cope with and adapt to	E	2,3,10
	stress.		
5	Evaluate the applications of stress research in	E	2,3,10
	biotechnology and environmental management.		
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Crea	te (C), Skill ((S),
Interes	t (I) and Appreciation (Ap)		

Module	Units	Course description	Hrs.	CO
			60	No.
	1.1	Introduction to Stress Physiology		
		Definition and Types of stress.		
		Historical perspectives on stress research. Concepts of	3	1
		homeostasis and allostasis in animal physiology. stress		
		response mechanism,		
1	1.2	Neuroendocrine Basis of Stress		
		Structure and function of the hypothalamic- pituitary-		
		adrenal (HPA) axis.	10	3
		Role of glucocorticoids and catecholamines in stress		
		response. Acute vs. chronic stress responses.		
	2.1	Cellular and Molecular Mechanisms		
		Signal transduction pathways in stress response. Role of heat	10	2
2		shock proteins and stress proteins.		
		Mechanisms of apoptosis and cell survival during stress.		
	2.2	Environmental Stressors:		
		Physiological responses to temperature, hypoxia, and	4	2,3
		pollution. Human Impact on Animal Stress, Stress and		
		Animal Welfare		
	3.1	Stress physiology in plants – Definition and types of plant		
		stress. Responses of plants to biotic (pathogen and insects)		
		and abiotic (water, temperature and salt) stresses. Signal		
		Transduction in Plant Stress Responses- Perception of stress	15	3
		signals.		
2		Signal transduction pathways: (receptors, second		
3		messengers, and transcription factors.)		
	2.0	Role of phyto-hormones in stress signaling.		
	3.2	Agricultural Implications of Plant Stress: Impact of stress		
		on crop yield and quality. Breeding and biotechnological	8	1.2.4
		approaches to improve stress tolerance. Management practices to mitigate stress in agricultural systems	0	1,2,4
	4.1	practices tomitigate stress in agricultural systemsMicrobial stress physiology:Definition and types of stress		
4	4.1	in microorganisms. Signal Transduction Pathways in		
7		Microbial Stress Responses, Applications of Microbial	10	1,4
		Stress Physiology		1,4
		Sucos i hydrology		

COURSE CONTENT

Content for Classroom transaction (Units)

	5		Teacher specific Module		
--	---	--	-------------------------	--	--

Teaching	Classroom Procedure (Mode of transaction)
and	Classroom lectures
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive
Approach	Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic
	learning, , Library work and Group discussion, Presentation by individual student/
	Group representative
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA) Theory
Types	Total = 30 marks
	Quiz/ Test Papers/ seminars
	B. End Semester Examination
	Theory Total 50 marks, Duration 1.5 hrs
	Fill in the blanks $-(10 \text{ x } 1) = 10 \text{ Marks},$
	Short questions- (10 out of 12) x $2 = 20$ Marks,
	Short Essays (5 out of 7) x $4 = 20$ Marks

- 1. Blum, A. (2011). Plant breeding for water-limited environments. Springer.
- 2. Broom, D. M., & Johnson, K. G. (1993). Stress and animal welfare. Chapman & Hall.
- 3. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). (2015). Biochemistry and molecular biology of plants (2nd ed.). Wiley Blackwell.
- 4. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 30(3), 239-264.
- 5. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374-381.
- 6. Cockrem, J. F. (2007). Stress, corticosterone responses and avian personalities. Journal of Ornithology, 148(2), 169-178.
- 7. Debnath, B. C., & Chatterjee, P. N. (2015). Impact of heat stress on dairy animal health and milk production: A review. Journal of Animal Research, 5(2), 183-193.
- 8. Fink, G. (Ed.). (2010). Stress science: Neuroendocrinology. Academic Press.
- 9. Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875.
- 10. Gupta, S., & Earley, B. (2020). Stress physiology of farm animals: A comprehensive review. Indian Journal of Animal Sciences, 90(2), 123-133.
- 11. Jones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental plant physiology (3rd ed.). Cambridge University Press.
- Kishore, K., Das, T. K., & Mohanty, T. K. (2011). Effect of environmental stress on reproductive performance of dairy cows: A review. Indian Journal of Animal Sciences, 81(3), 236-243.
- Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55, 459-493.

- 14. Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M.,
- ... & Richter-Levin, G. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews, 35(5), 1291-1301.
- 15. Lambers, H., Chapin, F. S., III, & Pons, T. L. (2008). Plant physiological ecology (2nd ed.). Springer.
- 16. Malik, P. K., Singh, R. K., & Kumar, A. (2018). Heat stress in livestock: Impact and ameliorative strategies. Journal of Animal Research, 8(2), 211-226.
- 17. Moberg, G. P., & Mench, J. A. (Eds.). (2000). The biology of animal stress: Basic principles and implications for animal welfare. CABI Publishing.
- 18. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
- Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants

 A review. Plant Soil and Environment, 54(3), 89-99.
- 20. Reddy, P. R. K., & Sivakumar, A. V. N. (2011). Oxidative stress and antioxidants in dairy cattle. Indian Journal of Dairy Science, 64(3), 223-230.
- 21. Sapolsky, R. M. (2004). Why zebras don't get ulcers: The acclaimed guide to stress, stress-related diseases, and coping (3rd ed.). Holt Paperbacks.
- 22. Sharma, A., & Kataria, N. (2010). Biomarkers for heat stress in camel. Journal of Stress Physiology & Biochemistry, 6(2), 38-44.
- 23. Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinauer Associates.
- 24. Wingfield, J. C., & Kitaysky, A. S. (2002). Endocrine responses to unpredictable environmental events: Stress or anti-stress hormones? Integrative and Comparative Biology, 42(3), 600-609.

Programme	BSc (Honors) Biological	Sciences				
Course Name	TOXICOLOGY STUDIE	S AND TH	ECHNIQUE	ES		
Type of	DCE					
Course						
Course Code	UC7DCEBTS404					
Course	400	400				
Level						
Course	This course offers a cor	nprehensiv	ve introduct	ion to the fi	eld of toxicol	ogy, focusing
Summary	on the principles, metho	on the principles, methodologies, and applications of toxicological studies. It covers				
	the mechanisms of toxic	ity, the ass	essment of	chemical haz	zards, and the	evaluation of
	toxic effects on biological systems. Students will gain hands-on experience with					
	various techniques used in toxicological research and learn to apply these methods to					
	assess the impact of toxicants on human health and the environment.					
Semester	VII		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		4	0	0	0	60
Pre- requisites,		Est. in	1001			
if any		ist. In	IAT			

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PO			
No.	Domain* No					
1	Understand the fundamental principles of toxicology, including	U	2,3,10			
	dose-response relationships and mechanisms of toxicity					
2	Learn about the various classes of toxicants and their sources,	U	2,3,10			
	including environmental pollutants, and industrial chemicals,					
3	Gain proficiency in the techniques and methodologies used in	R	2,3,10			
	toxicological research, including in vitro and in vivo testing,					
	biomonitoring, and risk assessment.					
4	Develop skills in analyzing toxicological data and interpreting	S	2,3,10			
	results within a regulatory and public health context.					
5	Explore current issues and advancements in toxicology,	С	2,3,10			
	including emerging contaminants and novel testing methods.					
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E),Crea	te (C), Skill (S),			
Interes	t (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	odule Units Course description		Hrs.	CO
		•	60	No.
1	1.1	Principles of Toxicology : Introduction, definition, brief history, scope and sub-divisions of toxicology, Classification of toxins, natural toxins, animal toxins, plant toxins, food toxins, genetic poisons and chemical toxins Basic concepts-Dose and dose response, type of toxic effect (allergic reactions, idiosyncratic ic reactions, reversible and irreversible effects, acute toxicity, sub- acute toxicity, sub chronic effects and Chronic effects)Factors affecting toxicity- Species and strain, age, sex, nutritional status, hormones, circadian rhythms and environmental factors	10	1
	1.2	Environmental Toxicology : Air pollution- Classification and properties of air pollutants, Behaviour and fate of air pollutants, photochemical smog acid rain, health effect of air pollutant in man.	5	2
	1.3	Water pollution- Origin of Wastewater, Types of water pollution(domestic, Industrial, agricultural, solid waste, thermal and oil pollution) Toxic water pollutants and their heaith effects, ground water pollution, health effects of marine pollution, case studies.	5	1,2
	1.4	Radioactive pollution- Sources of radioactive pollution, health effects of radiation. famous incidents of radioactive pollution	5	1,2
	2.1	Systemic Toxicology : cutaneous toxicity- Skin as a barrier against toxins, dermatitis (initant dennatitis, allergic (initant dennatitis, allergic dennatitis, chemical) bums), pigmeutry disturbances, phototoxicity, skin cancer by radiation, arsenic and PAH	5	2,3
2	2.2	Hepatotoxicity- mechanism of liver injury, case studies pertaining to carbon tetrachloride and acetaminophen, types of liver injury (fatty liver, , bile duct damage, sinusoidal damage, liver cell death- necrosis and cirrhosis, Liver tumors)Renal toxicity- mechanisms of renal injury, specific nephrotoxins (heavy metals, halogenated hydrocarbons, therapeutic agents), nephropathy.	10	2

	3.1	Occupational and Industrial Toxicology: Occupational hazards-	10	2,3		
		physical, chemical, biological and mechanical hazards.				
		Occupational diseases: Pneumoconiosis, Silicosis, Asbestosis,				
		Anthracosis.				
		Prevention in different environments - Home, Workplace, Pollution of Air,				
		Water and Land.				
		Occupational Cancer – Skin cancer, Lung cancer, Bladder cancer and				
		Leukemia;				
		Prevention of Occupational diseases.				
		Industrial toxicology - history and basic features, Industrial hygiene,				
		Risk assessment and Management of industrial chemicals.				
		Introduction, Legislation and Regulation – Federal government, State				
3		government, Legislation and Regulation in other countries.				
	4.1	Techniques: Bioassays, phototoxicity, comet assay, modified Salmonella	15	5		
		assay, transgenic bioassays, neonatal bioassays				
		Invitro bioassays: Predictive and mechanistic toxicology, different cell				
		lines their use and				
4		Limitations Est in 1921				
		Chromatography(gas and liquid chromatography)				
		Mass spectrometry, spectroscopy(UV-visible spectroscopy,				
		infrared spectroscopy, NMR, HPLC, Toxicogenomics				
5		Teachers Specific Module				

	Classroom Procedure (Mode of transaction)				
Teaching	Classroom lectures				
and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,				
Learning	interactive Instruction:, Active co-operative learning, Seminar, Group				
Approach	Assignments Authentic learning, Library work and Group discussion,				
	Presentation by individual student/ Group representative				
Assessment	MODE OF ASSESSMENT				
Types					
	A. Continuous Comprehensive Assessment (CCA)				
	Theory Total=25 marks				
	Quiz/ Test Papers/ seminars				
	B. End Semester Examination				
	Theory Total 50 marks, Duration 1.5 hrs				
	Fill in the blanks $-(10 \text{ x } 1) = 10$ Marks,				
	Short questions- (10 out of 12) x $2 = 20$ Marks,				
	Short Essays (5 out of 7) x $4 = 20$ Marks				

REFERENCES

- 1. Agarwal, A., & Gopal, K. (2010). Principles of toxicology. ibdc publishers India.
- Cockerham, L. G., & Shane, B. S. (Eds.). (n.d.). Basic environmental toxicology. CRC Press, London.
- Goldfrank, L. R., Flomenbaum, N. E., Lewin, N. A., Howland, M. A., Hoffman, R. S., & Nelson, L. S. (2006). Goldfrank's toxicologic emergencies (8th ed.). McGraw-Hill.
- 4. Gupta, P. K., Salunkha, & Gupta, B. V. (Eds.). (n.d.). Modern toxicology (3 volumes). B V Gupta Metropolitan Book Co., Pvt Ltd, New Delhi.
- 5. Haley, T. J., & Berndt, W. O. (Eds.). (n.d.). Handbook of toxicology. Hemisphere Publishing Corporation, Washington.
- 6. Hayes, A. W. (Ed.). (2007). Principles and methods of toxicology (5th ed.). CRC Press.
- 7. Hodgson, E., & Levi, P. (2000). Textbook of modern toxicology. McGraw-Hill International Edition, Singapore.
- 8. Jatimbrell. (n.d.). Principles of biochemical toxicology. Taylor and Francis Ltd, London.
- 9. Jasra, O. P. (n.d.). Encyclopedia of toxicology.
- 10. Landis, W. G., & Yu, M. H. (2003). Introduction to environmental toxicology (3rd ed.). Lewis Publishers, Florida.
- 11. Matham, V. K. (2011). Essentials of toxicology. New India Publishing Agency, New Delhi.
- 12. Walker, C. H., Hopkin, S. P., Sibly, R. N., & Peakall, D. B. (Eds.). (2006). Principles of ecotoxicology (3rd ed.). Taylor and Francis, New York, NY.

Programme	BSc (Honours) Biological Sciences					
Course Name	OMICS APPROACHES IN	N BIOTECI	HNOLOGY			
Type of	DCC					
Course						
Course Code	UC8DCCBTS400					
Course	400					
Level						
Course	Omics approaches aim t	o ensure	that studen	ts not only	acquire the	oretical
Summary	knowledge but also gain	practical	skills and	a broader ur	nderstanding	of the
	implications of omics approaches in the biotechnology landscape. The course					
	should prepare them to contribute to cutting-edge research, address complex					
	biological questions, and navigate the ethical and practical challenges associated					
	with omics technologies.					
Semester	VIII		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		3	0	1	0	75
Pre-	Student with good knowledge and interest of Microbiology and genetics.					
requisites, if	Est. in 1921					
any						

COURSE OUTCOMES

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Demonstrate a comprehensive understanding of genomics, transcriptomics, proteomics, metabolomics, and other omics approaches.	U	2
2	Acquire proficiency in the use of high-throughput technologies such as next-generation sequencing, microarray analysis, and mass spectrometry.	U, S	2,3,9,10
3	Develop the ability to critically interpret omics data and draw meaningful biological conclusions.	U	2
4	Understand how to integrate data from multiple omics technologies to gain a holistic view of biological systems	U	2,3,9,10
5	Explore and evaluate the applications of omics approaches in various biotechnological fields, including medicine, agriculture, and environmental science.	U,A,E	2,3,9,10
6	Acquire practical skills in generating omics data through laboratory techniques and gain proficiency in bioinformatics tools for the analysis and interpretation of large-scale omics datasets.	U,A,S	2,3,9,10
7.	Apply omics approaches to address biological research questions, including the design and execution of experiments, and the interpretation of results.	U,A,S	2,3,9,10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			45	No.
		Introduction, scope and applications to Omics	5	
		Technologies		
	1.1	Overview of Omics: Introduction to genomics,	2	1
		transcriptomics, proteomics, metabolomics, and other omics fields		
	1.2	High-throughput Technologies: Understanding microarray	3	
		technology, next-generation sequencing (NGS), mass spectrometry,		2,3
4		and other high-throughput methods.		
1		Applications of Omics in Biotechnology		
		Medical Biotechnology: Omics approaches in personalized medicine,		
		disease diagnostics, and drug discovery.		
	1.3	Environmental Biotechnology: Applications in	10	4,5
		environmental monitoring and remediation.		
		Agricultural Biotechnology: Omics in crop improvement and		
		agriculture.		
		Genomics	10	
		Genome Sequencing: Principles and applications of whole- genome	_	
	2.1	sequencing, shotgun sequencing, and bioinformatics tools for	6	4
		genome analysis.		
•	2.2	Functional Genomics: Study of gene function, RNA interference	4	3,4
2		(RNAi), and CRISPR/Cas9 technology.	0	
	2.2	Transcriptomics	8	~
	2.3	RNA Sequencing (RNA-Seq): Principles, experimental design, and	4	5
	2.1	data analysis for transcriptome profiling.	4	0.67
	2.4	Microarray Analysis: Introduction to microarray technology for gene	4	2,6,7
		expression studies	10	
	2 1	Proteomics and Metabolomics	12	26
	31	Mass Spectrometry: Principles of mass spectrometry for protein	2	2,6
3		identification and quantification.		
3	3.2	2D Gel Electrophoresis: Techniques for separating and analyzing	4	6,7
	5.2	proteins	4	0,7
	3.3	Metabolite Profiling: Techniques for the comprehensive study of	3	3,4
	5.5	small molecules in biological samples.	5	5,4
	3.4	Metabolic Pathway Analysis: Understanding metabolic pathways	3	3,4
	5.4	and their regulation.	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			30	
		PRACTICALS	30	

4	4.1	 Database mining of resources in OMICS - SRA, STRING, METACyc, UNIPROT, BIOGRID etc. Analysis of Mnase Sequence data. 13. ATAC- Sequence data analysis. DGE data plotting - PCA plot, T-SNE plot etc. Analysis of Metagenomics NGS data. Preparation of report based on -Databases and data repositories used in systems Biology 	6,7
		Teacher Specific Module	
5			

	Classroom Procedure (Mode of transaction)
Teaching	Lectures, ICT enabled classes, Group discussions,
and	assignments, seminar presentations and activities
Learning	Note: Teaching aids like software, models, videos related to the topic may be used.
Approach	
	MODE OF ASSESSMENT
	Continuous Comprehensive Assessment (CCA) Theory Total=25
Assessment	marks
Types	Quiz/ Test Papers/ assignments/seminars
	Practical Total 15 marks: Lab performance/ record/ report/ case studies
	B. End Semester examination
	Theory Total 50 marks, Duration 1.5 hrs
	Fill in the blanks $-(10 \times 1) = 10$ Marks,
	Short questions- (10 out of 12) x $2 = 20$ Marks,
	Short Essays (5 out of 7) x $4 = 20$
	Practicals Total 35 marks Duration- 2 hrs
	Record 10 marks, Examination 25 marks: Sequence analysis, use of databases 20
	marks, Viva-5 marks

- 1. Brown, T. A. (2023). Genomes 5.
- 2. Choudhuri, S. (2014). Bioinformatics for beginners: genes, genomes, molecular evolution, databases and analytical tools. Elsevier.
- Lesk, A. M. (2017). Introduction to genomics. Oxford University Press. 3.
- 4. Muller, U. R., & Nicolau, D. V. (Eds.). (2005). Microarray technology and its applications (pp. 73-77). Berlin: Springer.
- 5. Palsson, B. (2015). Systems biology. Cambridge university press.
- 6. Pennington, S. R., & Dunn, M. J. (2001). Proteomics: from protein sequence to function.
- 7. Pennington, S. R., & Dunn, M. J. (2001). Proteomics: from protein sequence to function.
- 8. Streit, W. R., & Daniel, R. (2017). Metagenomics. Springer New York.
- 9. Wang, D. (2017). Systems Biology: Constraint-Based Reconstruction and Analysis
- 10. Weckwerth, W. (Ed.). (2008). Metabolomics: methods and protocols (Vol. 358). Springer Science & Business Media.

- SUGGESTED READINGS
 Boyle, J. (2007). Proteomics for Biological Discovery, by Timothy D. Veenstra and John R. Yates. Biochemistry and Molecular Biology Education, 35(3), 227-227.
- 2. Cantor, C. R., & Smith, C. L. (2004). Genomics: the science and technology behind the human genome project. John Wiley & Sons.
- 3. Carrera, M., & Mateos, J. (2021). Shotgun Proteomics (pp. 215-223). New York, NY, USA Springer.
- 4. Craig, J., & Wong, N. C. (2011). Epigenetics: a reference manual.
- 5. Klipp, E., Liebermeister, W., Wierling, C., & Kowald, A. (2016). Systems biology: a textbook. John Wiley & Sons.
- 6. Kumar, D. (2007). From evidence-based medicine to genomic medicine. Genomic medicine, 1(3-4), 95-104.
- 7. Mishra, N. C. (2011). Introduction to proteomics: principles and applications. John Wiley & Sons.
- 8. Samuelsson, T. (2012). Genomics and bioinformatics: an introduction to programming tools for life scientists. Cambridge University Press.
- 9. Snustad, D. P., & Simmons, M. J. (2015). Principles of genetics. John Wiley & Sons.
- 10. Twyman, R. (2004). Principles of proteomics. Taylor & Francis.
- 11. Westermeier, R., & Naven, T. (2002). Proteomics in practice: a laboratory manual of proteome analysis.

Programme	BSc (Honours) Biological	Sciences				
Course Name	MICROBIAL BIOTECHN	OLOGY				
Type of	DCC					
Course						
Course Code	UC8DSCBTS401					
CourseL	400					
evel						
Course	The course will enable students to apply the learning of Biotechnology concepts				concepts	
Summary	towards the exploitation of	microbial	population f	or industrial	and human	benefits.
	The students are trained in	: Screening	for microbi	al strains from	n different	samples.
	To prepare and sensitize the students to scope for research, the increasing for skilled					
	scientific manpower with an understanding of research, industrials applications and					
	microbiology ethics.					
Semester	VIII		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details	Es	3	9021	1	0	75
Pre-	Student with basic knowled	ge and inte	rest of Micr	obiology and	Biotechnol	ogy.
requisites, if		<u>)</u>	1 222			
any		1 13	<u> </u>			
		1.2.5.2 (17.2.5.)	_//			

COURSE OUTCOMES

CO	Expected Course Outcome	Learning	PO No			
No.		Domains*				
1	Developing an understanding about the concept, importance and scope of Microbial Biotechnology.	U	2,3,9,10			
2	Empower students with knowledge on Microbial products by highlighting the roles and characteristics of microorganisms in field of Biotechnology	U, A,S	2,3,9,10			
3	Giving insight on Fermentation process	U	2,3,9,10			
4	Helps students to know the beneficial role of microorganisms in bioprocessing of different types of fermented products	U,A	2,3,9,10			
5	Students learn the production of recombinant proteins, vaccines, and biopharmaceuticals by genetic engineering and fermentation processes	U,A	2,3,9,10			
6	Helps students to know the different microorganisms and their products (enzymes, polymers, metabolites, etc.) that are used in the biotechnology industry.	U,A, S	2,3,9,10			
*Rem	*Remember(K), Understand (U), Apply(A), Analyse (An), Evaluate(E), Create(C), Skill(S),					
Intere	est(I) and Appreciation(Ap)					

Module	Unit	Course description	Hrs	СО
			45	No.
		Overview of Microbial Biotechnology	10	
	1.1	Historical perspectives, Scope and applications.	2	1
1	1.2	Isolation, preservation and maintenance of industrially important	4	
_		microbes		
	1.3	Methods of Strain improvement and selection.	4	2,3
_		Application of Microbes in Agriculture and environment	12	
	2.1	Bio-fertilizers - Mass inoculum production of Rhizobium,	2	2,3,4
		Azospirillum, Azotobacter.		
-	2.2	Mycorrhizal inoculants, Blue green algae, Azolla,	2	2,3,4
		bioinsecticides, biopesticides,		
Ī	2.3	Abiotic stress tolerant plants – drought, flooding, salt and temperature.	2	2,3,4
•	2.4	Biotic stress resistant to insects, fungi, bacteria, viruses,	1	2,3,4
2		weeds		
-	2.5	Bioremediation of hydrocarbons and xenobiotic compounds,	1	2,3,4
		In situ and ex-situ bioremediation.		
	2.6	Biodegradation, Bioleaching, Biomining, Biopaints, Bioantifouling	4	2,3,4
		agents, Bioelectricity, Biodetergents, Biopolymers, Biocement and		
		Bioplastics		
3		Application of Microbial Biotechnology in Medicine	8	
Ī	3.1	Recombinant proteins, vaccines, antibiotics, hormones,	5	5
		interferons, lycopene (pigment) and melanin		
	3.2	Microbial biosensors	1	5
	3.3	Bioweapons	2	5
_		Industrial Microbial Biotechnology	15	
	3.4	Industrial production of Primary metabolites and secondary	2	6
-		metabolites-shikimic acid		
	3.5	Production of alcohol, acetone- butanol, citric acid, acetic acid,	4	6
-		lactic acid.		
	3.6	Production of Antibiotics- penicillin, streptomycin,	2	6
	3.7	Microbial production of enzymes- amylase, protease, cellulase.	2	6
		PRACTICAL	30	
-	4.1	1, Design and Preparation of Media for Bioprocesses		6
		2, Isolation of industrially important microorganism from		

COURSE CONTENT Content for Class room transaction (Units)

	different sources using specific substrates	
	3, Preservation and maintenance of microbial cultures –	
4	Refrigeration, Mineral Oil layer, glycerol stocks	
	4. Immobilization of microbial cells by calcium alginate gel	
	entrapment	
	5. Solid state fermentation of some microbial products	
	6.Demonstration of wide diversity of microbes and their	
	potential for use in microbial biotechnology	
	7. Cultivation and mass multiplication of Azolla	
	(Demonstration)	
5	Teacher Specific Module	

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Module 1: Lectures, ICT enabled classes, Group discussions, seminar			
Approach	presentations and activities			
	A visit to educational institute/university/industry to see an industrial			
	fermenter, cultivation process and other downstream processing operations.			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
	Theory Total=25 marks			
	Quiz/ Test Papers/ seminars/ assignment			
Assessment Types	Practical Total 15 marks			
	Lab performance/ record/ industry visit report			
	B. End Semester examination			
	Theory Total 50 marks, Duration 1.5 hrs			
	Fill in the blanks $-(10 \text{ x } 1) = 10 \text{ Marks}$,			
	Short questions- $(10 \text{ out of } 12) \ge 20 \text{ Marks},$			
	Short Essays (5 out of 7) x $4 = 20$ Marks			
	Practicals Total 35 marks Duration- 2 hrs Record			
	10 marks, Examination 25 marks: Performance of			
	experiments 15 marks Viva-5 marks, research institute			
	visit report- 5 marks			

- 1. Atlas, R., & Bartha, R. (Eds.). (2013). Microbial Ecology: Fundamentals and Applications. Pearson Education, Benjamin Cummings Publishing Company.
- 2. Cassida, L. E. (1968). Industrial Microbiology. John Wiley and Sons Publishers.
- 3. Forster, C. F., & Wase, D. J. (1987). Environmental Biotechnology. Ellis Harwood.
- 4. Jayaraj, S. (Ed.). (1985). Microbial control and pest management.
- 5. Mansi, E. M. T., Bryce, C. F. A., Dmain, A. L., & Alliman, A. R. (2009). Fermentation Microbiology and Biotechnology. Taylor and Francis.
- 6. Mor. Young, M. (Ed.). (2011). Comprehensive Biotechnology (2nd ed.). Elsevier.
- 7. Prescott, Lansing, & Klein, John. (2002). Microbiology. Wiley Publications.
- 8. Rangaswami, G., & Bagyaraj, D. J. (1998). Agricultural Microbiology II edition published by Prentice Hall of India Pvt. *Ltd. N. Delhi*.
- 9. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of Fermentation Technology. Elsevier.

- 1. Funke. (1995). Study Guide for Microbiology (5th Ed.). Benjamin/Cummings Publishing Company, Redwood City, CA.
- 2. Lee, Y. K. (2003). Microbial Biotechnology: Principles and applications. World Scientific Publisher.
- 3. Tortora, Funke, Case. (1995). Microbiology, An Introduction (5th Ed.). Benjamin/Cummings Publishing Company, Redwood City, CA.

Programme	BSc (Honours) Biological Sciences					
Course Name	PLANT BIOTECHNOLOGY					
Type of	DCE					
Course						
Course Code	UC8DSEBTS400					
Course	400					
Level						
Course	This course in biote	This course in biotechnology describes with the micro propagation plant cell				
Summary	culture and transgen	esis of pla	nts Based o	on the knowle	edge of vector	s, enzymes
	and applications of	transgenes	is gained ir	n previous se	mesters, the le	earner will
	study about plant ce	study about plant cell, tissue and organ culture, micro propagation, transgenic				transgenic
	plant development as	nd applicat	ions			
Semester	VIII		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		3 0 1 0 75				
Pre- requisites,	Basic knowledge in p	lant tissue	culture and	genetic engin	neering	
if any						

Est in 1921 COURSE OUTCOMES (CO)

СО		Learning	PO
No.	Expected Course Outcome	Domain*	No
1	To understand and compare the traditional and biotechnological	U,K	2,3,10
	methods of plant improvement.		
2	To learn the development of new variety and hybrid plants	U,E	2,3,10
	through plant cell culture.		
3	To learn the vectors and techniques used in transgenic plant	U,A	2,3,10
	production		
4	To understand and evaluate the applications of transgenic plants	U,K	2,3,10
5	To gain know how in metabolic engineering and production of	E	2,3,10
	secondary metabolites		
	mber(K),Understand(U),Apply(A),Analyse(An),Evaluate(E),Create((preciation(Ap)	C),Skill(S), Int	terest(I)

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
	1.1	Conventional plant breeding. Introduction to cell and tissue culture; Tissue culture as a technique to produce novel plants and hybrids		1

1	-			1
		Tissue culture media (Composition and Preparation).	3	1
	1.2	Sterilization and agents of sterilization used in tissue culture		
		labs.		
		Initiation and maintenance of callus and suspension cultures;		
		Single cell clones. Organogenesis; Somatic embryogenesis;		
	1.3	Transfer and establishment of whole plants in soil. Shoot tip	5	1
		culture; Rapid		
		clonal propagation and production of virus-free plants. Embryo		
1		culture and embryo rescue		
		Protoplast isolation, culture and fusion; Selection of hybrid cells		
		and regeneration of hybrid plants; Symmetric and asymmetric		
		hybrids, cybrids. Anther, pollen and ovary culture for production		
		of haploid plants and homozygous lines. Somaclonal variation.		
	1.4	In vitro mutation – Sexual incompatibility and male	4	1,2
		sterility. Cryopreservation; Slow growth and DNA banking for		-,-
		germplasm conservation		
		Plant transformation technology – Basis of tumor formation;		
		Hairy root; Features of Ti and Ri plasmids; Mechanisms of		
	2.1	DNA transfer; Role of virulence genes; Use of Ti and Ri as	3	2,3
	2.1	vectors; Use of scaffold attachment regions;	5	2,5
		Binary vectors; Use of 35S and other promoters; Genetic	3	3
	2.2	markers; Use of reporter genes; Reporter gene with introns;	5	3
	2.2			
		Methods of nuclear transformation; Viral vectors and their	5	3
2	2.2	applications; Multiple gene transfers; Vector-less or direct	5	3
2	2.3	DNA transfer; Particle bombardment, electroporation,		
		microinjection. Transformation of monocots		
		Applications of plant transformation.		
		Herbicide resistance, insect resistance, Bt genes, Non Bt like		
		protease inhibitors, alpha amylase inhibitor, virus resistance,	10	4
	3.1	coat protein mediated disease resistance, disease resistance,		
		RIP, antifungal proteins, thionins, PR proteins, nematode		
		resistance, abiotic stress		
	I			

3				
		Molecular marker aided breeding -an introduction. Chloroplast		
	3.2	transformation – Advantages, Vectors, Success with tobacco and potato	4	4,5
	3.3	Metabolic engineering and industrial products – Plant secondary metabolites, Control mechanisms and manipulation of phenylpropanoid pathway &	5	5
		shikimate pathway. Green house and green home technology		
		PRACTICALS	30	
		Plant tissue culture techniques Surface sterilization		
4	4.1	Callus culture Anther culture	16	1,2

		Embryo culture Protoplast isolation Somatic		1,2,3,
	4.2	Hybridization		4,5
5		Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)
and	Lectures, group interactions, seminars, power point presentations.
Learning	Teaching aids used- Audio Visual Presentation, Photographs, Internet Resources
Approach	
	MODEOFASSESSMENT
	A. Continuous Comprehensive Assessment(CCA)
	Theory Total = 25 marks
	Test Papers/Assignments/Seminars
Assessment	Practical Total= 15 marks
Types	Systematic attendance and record submission
	Skills in practical performance
	Lab involvement, Viva
	B. End Semester Examinations
	Theory Total = 50 marks (Duration 1.5 hrs)
	Multiple Choice Questions $-(10 \times 1) = 10$ Marks,
	Short questions- $(10 \text{ out of } 12) \ge 20 \text{ Marks},$
	Short Essays (5 out of 7) x $4 = 20$ Marks
	Practical Total =35 marks (Duration 2hrs)
	Record= 10 marks
	Viva=5 marks
	Practical Examination= 20 marks

- 1. Chawla, H. S. Biotechnology in crop improvement.
- 2. Gupta, P. K. (Ed.). (2009). Plant Biotechnology. Rastogi Publications.
- 3. Hammond, J., et al Plant biotechnology. Springer Verlag.
- 4. Singh, B. D. (Ed.). (2009). Plant Biotechnology. Kalyani Publishers.
- 5. Swamy, S. N. Plant cell and tissue culture. Tata Mc.

- 1. Bhojwani, S. S., &Razdan, M. K. (1996). Plant tissue culture: Theory and practice. Elsevier.
- 2. George, E. F., Hall, M. A., & De Klerk, G. J. (2008). Plant propagation by tissue culture. Springer Science & Business Media.
- 3. Giri, C. C., &Zaheer, M. (2019). Plant tissue culture: An introductory text. CRC Press.
- 4. Raghavan, V. (2004). Molecular embryology of flowering plants. Cambridge University Press.
- 5. Vasil, I. K., & Thorpe, T. A. (2010). Plant cell and tissue culture. Springer Science & Business Media.

Programme	BSc(Honours)Biological	Sciences				
Course Name	BIOTECHNOLOGY AND FORENSIC MEDICINE					
Typeof	DCE					
Course						
Course Code	UC8DCEBTS401					
Course	400					
Level						
Course	The course provides a	comprehe	ensive over	rview of th	e intersection	between
Summary	serological tests and a techniques and the use of learn how to collect and	biotechnology and forensic science. It includes topics such as DNA analysis, serological tests and analysis, forensic genetics, crime scene investigation techniques and the use of biotechnology in solving criminal cases. Students will learn how to collect and analyze biological evidence, interpret DNA profiles, and apply cutting-edge biotechnological methods in forensic investigations				
Semester	VIII		Credits		4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details	Fst 3in 1021 1 0 75					
Pre-	None				•	
requisites, if any						

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PO
No.		Domain*	No
1	To recognize the significance of immunoglobulins and lectins in	U,K	2,3,10
	forensic science		
2	To gain understanding in the role played by components of blood in	U,E	2,3,10
	forensic science		
3	To learn and apply techniques in biotechnology for solving cases in	U,A	1,2,3,10
	forensic science		
4	To understand and apply techniques for interpreting and analyzing		2,3,8,10
	DNA sequences in forensic sciences.		
5	To understand ethical and legal implications of using biotechnology in	A,S	1,2,3,8,
	forensic science		10
*Reme	mber(K),Understand(U),Apply(A), Analyse(An),Evaluate(E),Create(C),S	kill(S),	
Interes	t(I)and Appreciation(Ap)		

Module	Units	Course description	Hrs 45	CO No.	
	1.1	Immunoglobulin- types, physico-chemical properties and	4	1	
		function, raising of anti-sera, Lectins - their forensic significance.			
		Buffers and serological reagents, methods of			
		sterilization employed for serological work.			
	1.2	Composition of blood, Formation of blood, Blood groups –	4	2	
		history, biochemistry and genetics of ABO, Rh, Mn and other			
		systems. Methods of ABO blood grouping (absorption-			
		inhibition, mixed agglutination			
		and absorption elution) from blood stains and other body fluids/stains			
		viz. menstrual blood, semen, saliva, sweat, tear, pus, vomit, hair,			
		bone, nail etc. Blood group specific ABH substances.			
		Secretors and non- secretors			
	1.3	Blood groups that make racial distinctions. Lewis antigen, Bombay	4	1,2	
		Blood groups. HLA antigens and HLA typing. Role of sero-genetic			
		markers in individualization and paternity disputes. Pitfalls in red			
1		cell typing.			
	1.4	Determination of human and animal origin from bones, hair, flesh,			
		nails, skin, teeth body tissue, fluids/ stains viz. blood, menstrual			
		blood, semen, saliva, sweat, tear, pus, vomit, etc., through			
		immunodiffusion and immuno - electrophoresis, cross reactivity	5	2,3	
		among closely related species.		,	
		Individualization of blood stains: Determination of blood			
		groups, sex age and racialorigin from dried bloodstains			
	1.5	Red cell enzymes : Genetics , polymorphism and typing of PGM,			
		GLO-I, ESD, EAP,			
		AK, ADA etc. and their forensic significance. Serum proteins:	8	2,3	
		Genetics, polymorphism and typing of - Hb, HP, Tf, Bf, C3 etc.		,	
		and their			
		forensic significance.			
	2.1	Concept of sequence variation - VNsTR, STRs, Mini STRs, SNPs.	5	3,4	
		Detection techniques- RFLP, PCR amplifications, Amp-FLP,			
		sequence			
		polymorphism, Y-STR, Mitochondrial DNA.			
	1	· · · ·			
2	2.2	Population databases of DNA markers –STRs, Mini STRs, SNPs.	5	3,4	

COURSE CONTENT

Content for Classroom transaction (Units)

New & Future technologies: Analysis of SNP, DNA chip

technology- Microarrays, Cell free DNA,

Synthetic DNA, Sequencing technologies

		1	1		
	Evaluation of results, frequency estimate calculations and				
	2. interpretation, Allele frequency determination, Match probability –	4	2,3		
	3 Database, Quality control, Certification and Accreditation				
	3. History of DNA profiling applications in disputed paternity cases,	3	5		
	1 child swapping, missing person's identity, civil immigration,				
	veterinary, wild life and agriculture cases. legal perspectives				
	3. Legal standards for admissibility of DNA profiling – procedural &				
	2 ethical concerns, Status of development of DNA profiling in India &	3	5		
3	abroad. Limitations of DNA profiling				
	PRACTICALS	30			
	PRACTICALS Serological tests for the diagnosis of microbial infections	30			
		30			
4	Serological tests for the diagnosis of microbial infections	30			
4	Serological tests for the diagnosis of microbial infections Agglutination and precipitation tests Immunodiffusion in gel	30			
4	Serological tests for the diagnosis of microbial infections Agglutination and precipitation tests Immunodiffusion in gel ELISA	30 30	4		
4	Serological tests for the diagnosis of microbial infections Agglutination and precipitation tests Immunodiffusion in gel ELISA 4 DNA isolation Estimation of DNA		4		
4	 Serological tests for the diagnosis of microbial infections Agglutination and precipitation tests Immunodiffusion in gel ELISA DNA isolation Estimation of DNA Separation of DNA and RNA by Agarose gel electrophoresis 		4		

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Lectures, group interactions, group seminar, power point presentations, case				
Approach	studies. Teaching aids used- Audio Visual Presentation, Photographs, Internet				
	Resources				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA) Theory				
Assessment	Total = 25 marks				
Types	Test Papers/Assignments/Seminars				
	Practical Total= 15 marks				
	Systematic attendance and record submission				
	Skills in practical performance, Lab involvement, Viva				
	B. End Semester examination				
	Theory Total = 50 marks (Duration 1.5 hrs)				
	Multiple Choice Questions $-(10 \times 1) = 10$ Marks,				

Short questions- (10 out of 12) x $2 = 20$ Marks, Short Essays (5 out of 7) x $4 = 20$ Marks
Practical Total =35 marks (Duration 2hrs)
Record= 10 marks Viva= 5 marks
Practical Examination=20 marks

- 1. Budowle, B., & Moretti, T. R. (2004). Forensic DNA typing protocols. Humana Press.
- 2. Butler, J. M. (2005). Forensic DNA typing: Biology, technology, and genetics of STR markers (2nd ed.). Academic Press.
- 3. Goodwin, W., Linacre, A., &Hadi, S. (2018). An introduction to forensic genetics (2nd ed.). John Wiley & Sons.
- 4. Jamieson, A., & Taylor, C. (2003). Forensic science: An introduction to scientific and investigative techniques. CRC Press.
- Walsh, P. S., &Buckleton, J. (2011). Forensic DNA evidence interpretation (2nd ed.). CRC Press.

- 1. Boorman, Kathleen E, Churchill; Blood group serology Livingstone, (1977)
- 2. Kobiinsky, Lawrence; DNA, John Wiley & Sons, (2005)
- 3. Kirby, Lorne; DNA fingerprinting, W H Freeman and Co, (1992)
- 4. Mcclintock, J. Thomas; Forensic DNA analysis, Lewis Publications, (2008)
- 5. Newton, David E.; DNA Evidence and Forensic Science, Viva books private limited, (2010)
- 6. Rudin, Norah; An Introduction to Forensic DNA Analysis, CRC Leviw Publishers, (2002)
- 7. Singh, Yashpal; DNA tests in Criminal Investigation Trial & Paternity Disputes, Alia Law Agency, (2006)
- 8. Burke, Terry; DNA Fingerprinting: Approaches and applications, Birkhauser Verlage, (1991)

Programme	BSc(Honors) Biological Sciences								
Course Name	PLANT MICROBE INTERACTION								
Type of	DCE								
Course									
Course Code	UC8DCEBTS402								
Course	400								
Level									
Course	This course aims to giv	This course aims to give an insight into the consequences, on population and							
Summary	ecosystem level, of co	mpatible a	and incomp	patible inter	ractions, to u	inderstand			
	infection process and co	ontrol mea	sures and t	o familiariz	e with the m	icrobial			
	production of plant meta	bolites.							
Semester	VIII		Credits		4	Total			
	Learning Approach	Lecture	Tutorial	Practical	Others	Hours			
Course		3	0	1	0	75			
Details		-	-		-				
Pre-	None								
requisites, if	Est. in 1921								
any		ESL. III IYZI							

COURSEOUTCOMES(CO)

СО		Learning	PO				
No.	Expected Course Outcome	Domain*	No				
1	To discuss interactions between plants and microbes and the defense	U,K	2,3,10				
	mechanism in host plant						
2	To gain insight on genetics of host-pathogen interactions and resistance	U,E	2,3,10				
	mechanism in plants.						
3	To use methods to analyse plant diseases and biological methods of	U,An	2,3,10				
	disease control						
4	To analyse plant microbe pathogenic and symbiotic interactions	An	2,3,10				
5	To understand the role of microbes in developing plant immunity	U,E	2,3,10				
6	To gain knowledge on biopesticides and their role in pest control	U,K	2,3,10				
*Reme	*Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S),						
Intoro	st(I)and Annrociation(An)						

Interest(I)and Appreciation(Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	СО
			45	No.
	1.1	Different interfaces of interactions -soil-plant-microbe interactions		
		leading to symbiotic (rhizobial and mycorrhizal), associative,	5	1
1		endophytic and pathogenic interactions		

	1.2	General concepts of plant immunity. PAMP-triggered immunity (PTI) and Effector triggered immunity (ETI). Outer membrane vesicles (OMVs) and their involvement in plant immunity. The type III secretion system and hypersensitive response.	5	1
	1.3		7	1,2
2	2.1	Plant pathogens and molecular basis of pathogenesis .Genetics of host-pathogen interactions, resistance genes, resistance mechanisms in plants. Basal and induced defence mechanisms.	6	2,3,4
	2.2	Resistance (ISR), Recognition mechanism and signal transduction during plant – pathogen interaction	5	2,3,4
	2.3	Virulence determinants of plant pathogenic bacteria- Enzymes, Toxins, pili, siderophores, secretion systems	5	3,4,5
	3.1	Microbial pest control: Bacillus thuringiensis-mode of action. Biocontrol agents– uses and practical constraints Biofungicide and bioherbicides	6	5,6
3	3.2	Plant growth promoting rhizobacteria. Use of plant– microbe symbiosis for remediation of pollutants and carbon (C) sequestration	6	1,4,5
		Practical Case study	30	
4	4.1	 The impact of plant-microbe interactions on soil health and ecosystem functioning The role of plant-associated bacteria in promoting plant stress tolerance Endophytic bacteria and their impact on plant health and growth The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers The role of plant growth-promoting bacteria in enhancing crop productivity 	30	4
5		Teacher Specific Module		
Teach and Learr Appro	d ning	Classroom Procedure (Mode of transaction) Lectures, group interactions, group seminar, power point presentations studies Teaching aids used- Audio Visual Presentation, Photographs, Internet R		es.
Assess Ty		MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total = 25 marks Test Papers/Assignments/Seminars Practical Total= 15 marks		
		Case study presentations and submission of reports		

Chart/Visual presentations
B. End Semester examination
Theory Total = 50 marks (Duration 1.5 hrs)
Multiple Choice Questions $-(10 \text{ x } 1) = 10$ Marks,
Short questions- (10 out of 12) x $2 = 20$ Marks,
Short Essays (5 out of 7) x $4 = 20$ Marks
Practical Total =35 marks (Duration 2hrs)
Record= 10 marks
Viva= 5 marks
Examination based on Case study assigned= 20 marks

- 1. Gillings, M., & Holmes, A. (2004). Plant microbiology. Bios Scientific publishers.
- 2. Huang, J-S. (2001). Plant pathogenesis and resistance: Biochemistry and physiology of plant-microbe interactions. Springer Verlag.
- 3. Jayaraj, S. Microbial control and pest management.
- 4. Kosuge, T., & Nester, E. W. (1989). Plant-microbe interactions: Molecular and genetic perspectives (Vols I-IV). McGraw Hill.
- 5. Lugtenberg, B. (Ed.). (2015). Principles of plant microbe interactions. Springer.
- 6. Paul, E. A. (2007). Soil microbiology, ecology, and biochemistry. Academic Press.
- 7. Rao, N. S. (2005). Soil microorganisms and plant growth. Oxford and IBH Publishing Co.
- 8. Stacey, G., & Keen, N. T. (1995). Plant-microbe interactions (Vols I-VI). Springer Science & Business Media.
- 9. Verma, D. P. S., & Kohn, T. H. (1984). Genes involved in microbe-plant interactions. Springer Verlag.

- Boller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379-406.
- 2. Jones, J. D. G., &Dangl, J. L. (2006). Plant Pathogens and Integrated Defense Responses. Annual Review of Phytopathology, 45(1), 399-436.
- 3. Lugtenberg, B., &Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63(1), 541-556.
- 4. Mendes, R., Garbeva, P., &Raaijmakers, J. M. (2013). The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiology Reviews, 37(5), 634-663.
- Van Loon, L. C., & Bakker, P. A. H. M. (2005). Induced Systemic Resistance as a Mechanism of Disease Suppression by Rhizobacteria. In Plant-Microbe Interactions (pp. 122-160). Springer, Dordrecht.

Programme	BSc (Honours) Biologica	al Sciences								
Course Name	MOLECULAR PHYLOGENY									
Type of	DCE									
Course										
Course Code	UC8DCEBTS403									
Course	400									
Level										
Course	This elective course d	eals with	the tools	and techni	ques used in	molecular				
Summary	phylogeny. The learner	will deve	elop a fund	lamental un	derstanding o	of sequence				
	analysis in bioinforma	tics Mode	ls of nucl	eic acid su	bstitution, tre	e building				
	algorithms, data mining	tools and s	submission	tools for nu	cleic acid are	studied for				
	understanding evolution	ary relatior	nships							
Semester	VIII		Credits		4	Total				
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours				
Details		3 0 1 0 75								
Pre-	None					1				
requisites, if	Est. in 1921									
any										
		1 12	1 1000							

COURSE OUTCOMES (CO)

CO		Learning	
No.	Expected Course Outcome	Domain*	PO
			No.
1	To understand the concepts of evolution and the role of	U,K	2,3,10
	mutation in the emergence of life		
2	To engage in the collection, analysis, and interpretation of genetic	U,S	2,3,10
	data from biological databases		
3	To use bioinformatics tools and software to analyze and	E, A, An	2,3,9,10
	interpret genetic sequences.		
4	To construct and interpret phylogenetic trees based on genetic data	A, An	2,3,9,10
	and submit sequences to databases		
5	To apply the knowledge of sequence analysis in molecular	E, A, An	2,3,9,10
	phylogenetics and answer real world research questions		
*Reme	mber(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S),	
Interes	t(I)and Appreciation(Ap)		

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
	1.1	Basic concepts of molecular evolution: Genetic information, population dynamics, evolution and speciation,	5	1
1	1.2	Molecular data as resources. Accessing databases for molecular phylogenetics, phylogenetic tree, methods for inferring phylogenetic trees, networking, RNA world	5	1,2
	1.3	Sequence databases and data base searches: Sequence databases, composite databases, database mirroring, and search tools	5	2
2	2.1	Concept of sequence Alignment, Scoring matrices: PAM &BLOSUM Alignment of Pairs of sequences: Dot Plot. Alignment Algorithms-Needleman and Wunsch Algorithm, Smith Waterman Algorithm. Search for Homologous sequences using BLAST & FASTA programs.	5	2,3
	2.2	Introduction to BLAST suite; BLAST N,BLASTP,BLASTX and TBLASTN	5	2,3
	2.3	Multiple Sequence Alignment: Dynamic Programming and progressive alignment. Tools: Clustal W from Expasy Website, T-Coffee, Mega, MUSCLE and COBALT	5	2,3
	3.1	Phylogenetic inference: Genetic distances and nuclear substitution models, phylogenetic inference based on distance methods- UPGMA, Neighbour Joining, Minimum Evolution, Least square	2	3,4
	3.2	Phylogenetic inference: Maximum Likelihood and Bayesian phylogenetic analysis, phylogenetic analysis based on parsimony,	4	3,4
3	3.3	Phylogenetic analysis using protein sequences, testing tree reliability – Bootstrapping and jackknifing	4	4
	3.4	Testing models and trees: Models of evolution and phylogeny reconstruction, model fit, likelihood ratio tests, Practising MEGA, Paup*, RaxML, Mr Bayes, J Model Test.	3	4,5
	3.5	Sequence submission tools- SEQUIN and BankIt	2	4
		PRACTICALS	30	
		 Accessing databases and retrieving data NCBI,GENBANK,SWISSPROT,PDB, OMIM To find similarity between the given sequence of 		3

4	4.1	 protein in a database. 3. To find the similarity between the given protein sequence and a Database using FASTA program 4. To familiarize with the multiple sequence alignment tool CLUSTALW2and MEGA 5. To familiarize with the multiplesequence alignment tool T-COFFEE 6. To do Phylogenetic analysis and evolutionary tree construction of the given protein sequences using PHYLIP 7. Sequence submission using SEQUIN Teaching Specific Module
5		reaching specific would

Teaching	Classroom Procedure (Mode of transaction)						
and	• Lectures, group interactions, group seminar, power point presentations,						
Learning	Hands on training in Bioinformatics tools and softwares						
Approach	Teaching aids used- Audio Visual Presentation, Internet Resources						
	MODE OF ASSESSMENT						
	A. Continuous Comprehensive Assessment (CCA)						
	Theory Total = 25 marks						
Assessment	Test Papers/Assignments/Seminars						
Types	Practical Total= 15 marks						
	Practical ability to perform Bioinformatics work						
	Skill in accessing molecular data and performing sequencing						
	alignment						
	Ability to find solutions to biological problems						
	B. End Semester examination						
	Theory Total = 50 marks (Duration 1.5 hrs)						
	Multiple Choice Questions $-(10 \text{ x } 1) = 10$ Marks,						
	Short questions- $(10 \text{ out of } 12) \ge 20 \text{ Marks},$						
	Short Essays (5 out of 7) x $4 = 20$ Marks						
	Practical Total =35 marks (Duration 2hrs)						
	Record= 10 marks						
	Viva= 5 marks						
	Bioinformatics Practical Examination= 20 marks						

- 1. Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press.
- 2. Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates.
- 3. Hall, BG. (2004) Phylogenetic Trees Made Easy: A How-To Manual, 2nd ed. Sinauer Associates, Inc.: Sunderland, M A.
- 4. Hartwell, LH, L Hood, ML Goldberg, AE Reynolds, LM Silver, RCVeres (2008) Genetics: From Genes to Genomes, 3rd Ed. McGraw-Hill: New York.
- 5. Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis (2nd ed.). Cold Spring Harbor Laboratory Press.
- 6. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press.
- 7. The phylogenetic Handbook, 2nd Edition, Philippe Lemey, Marco Salemi, Anne -MiekeVandamme, Cambridge University Press.
- 8. Yang, Z. (2014). Molecular evolution: A statistical approach. Oxford University Press.

- 1. Baldauf, S. L. (2003). Phylogeny for the faint of heart: a tutorial. Trends in Genetics, 19(6), 345-351.
- 2. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press.

Programme	BSc (Honours) Biological Sciences								
Course Name	GENOMICS, PROTEOMICS AND NANOTECHNOLOGY								
Type of	DCE								
Course									
Course Code	UC8DCEBTS404								
Course	400	400							
Level									
Course	This introductory course	This introductory course on genomics, proteomics, and nanotechnology is to learn							
Summary	about genes, proteins, and	d nanoscale	e materials	with the aim	of providing st	udents			
	with a broad understanding	ng of the cu	tting-edge	research and	applications in	volved			
	in these rapidly advancin	g fields.							
Semester	VIII		Credits		4	Total			
	Learning Approach	Lecture	Tutorial	Practical	Others	Hours			
Course		3	0	1	0	75			
Details		5	0	1	0	75			
Pre-	None	st. in	1021		·	•			
requisites, if	E	St. III	IATI						
any									
		- N. 19							

COURSE OUTCOMES (CO)

СО		Learning	PO	
No.	Expected Course Outcome	Domain*	No.	
1	To understand the basic principles and concepts of genomics and proteomics	U,K	2,3,10	
2	To develop the skills to analyze and interpret genomic and proteomic data.	U,E	1,2,3,10	
3	To gain insights in the sequencing technologies employed in genomics and proteomics	U,A	2,3,9,10	
4	To understand the basic principles in nanotechnology	U,K	2,3,10	
5	To explore the applications and significance of nanotechnology	A,S	2,3,9,10	
	*Remember(K),Understand(U),Apply(A), Analyse(An),Evaluate(E),Create(C),Skill(S), Interest(I)and Appreciation(Ap)			

Module	Units	Course description	Hrs	CO
			45	No.
	1.1	Organization of genome : Single sequence DNA, GC content, Intermediate repeat DNA,		
		Highly repetitive DNA, CpGislands , Gene Families, Pseudogenes, Duplicated genes, SNPs, STS, Tandemly repeated genes. Non protein Coding genes, Split genes, Overlapping genes, Spacer regions, ORF's Cryptic genes.	5	1
1	1.2	Multigene Families in Eukaryotes, LINE's, SINE's, Transposons and retrotransposons Molecular markers DNA Fingerprinting & DNA Foot printing	5	1
	1.3	Physical Maps – Clone Maps, RH Maps, EST's, STS Maps, FISH (Fluroscent Insitu Hybridization) Genetic Maps History of sequencing, Early Strategies for sequencing. Maxam and Gilbert Sequencing Sanger's sequencing	5	1,2
	2.1	Human Genome Project: Timeline, Methods, Outcome, Applications, Advantages and Ethical issues. Making the Clone Map: Generating, Assembling and Finishing the sequence	5	1,2,3
2	2.2	Automated whole Genome shotgun sequencing),Nextgenerationsequencingtechniques, Introduction toNGS data analysis.	5	1,2,3
	2.3	Annotating genomes: Sequence annotation and bioinformatics tools for genomics and genome comparison; analyzing gene expression-DNA microarray-design, analysis and visualization of data Application of DNA microarrays in prokaryotes,Microarray data analysis.Gene prediction in Prokaryotes and Eukaryotes, ORF prediction	5	2,3
	3.1	Classification of proteins, Protein separation & analysis; 2D Gel Electrophoresis, Liquid chromatography, Mass spectrometry. Protein structure determination with X-ray Crystallography & NMR spectroscopy.	2	1
	3.2	Protein sequencing protein expression profiling, protein - protein interactions	3	1,2,3
3	3.3	Protein databases: UniProtKB/Swiss-Prot, Interpro, PIR, PDB, SCOP & CATH, Pro- Dom, PFAM; Protein visualization tools- Swiss PDB Viewer, Pymol, Expasy proteomic tools	3	2, 3

COURSECONTENT Content for Classroom transaction (Units)

		Fundamental Concepts in Nanotechnology: Foundations in		
		nanosciences- introduction nanometre, nanoscale-quantum		
		confinement in nanomaterials Rationale behind the downsizing of the		
		materials Prime materials in nanotechnology-nanomaterials: unique		
		properties and defects in nanocrystalline materials.		
		Nano Fabrication: Introduction-synthesis of nanopowders using top down		
	3.4	and bottom up methods-top down fabrication methods-arc discharge		
		method-laser ablation method –ball milling-inert gas condensation-bottom		
		up fabrication methods STM (principle, construction and working,		
		advantages and disadvantages) - Raman spectroscopy	3	4
		(principle, construction and working)- Nanoindentation		
		Nanoscale Characterization: Introduction-XRD (principle and theory)-		
		SEM (principle, construction and working, advantages and disadvantages)		
	3.5	-TEM (principle, construction and working, advantages and	2	4
		disadvantages)-AFM (principle, construction		
		and working, advantages and disadvantages)		
	3.6	Applications of nanotechnology in cancer, Agriculture,	2	5
		Medicine, Communication technology,		
		Biotechnology and Bioinformatics.		
		PRACTICALS	30	
	4.1	1. Gene Structure and Function prediction.		
4		2. ORF Prediction		
		3. Sequence Similarity Searching		2
		4. Multiple Sequence Alignment		
		5. Analysis of Nucleic Acid Sequences		
		6. Bioinformatics tools used in Proteomics		
5		Teacher Specific Module		
		1		

Teaching	Classroom Procedure (Mode of transaction)
and	Lectures, group interactions, group seminar, power point presentations, case
Learning	studies, approaches in bioinformatics using tools in internet
Approach	Teaching aids used- Audio Visual Presentation, Internet Resources

	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory Total = 25 marks
Assessment	Test Papers/Assignments/Seminars
Types	Practical Total= 15 marks
	Skill sets in Bioinformatics
	Case Studies of real time applications of nanotechnology/

Submission of Report and Presentation
B. End Semester examination
Theory Total = 50 marks (Duration 1.5 hrs)
Multiple Choice Questions $-(10 \text{ x } 1) = 10$ Marks,
Short questions- $(10 \text{ out of } 12) \ge 220 \text{ Marks},$
Short Essays (5 out of 7) x $4 = 20$ Marks
Practical Total =35 marks (Duration 2hrs)
Record= 10 marks
Viva= 5 marks
Practical Examination= 20 marks

- 1. Albert, R. (2013). Network biology: Understanding the cell's functional organization. New York, NY: Garland Science.
- 2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell (6th ed.). New York, NY: Garland Science.
- Bhatia, R. (2015). Nanotechnology: Principles and applications. Boca Raton, FL: CRC Press.
- 4. Brown, T. A. (2012). Genomes (3rd ed.). New York, NY: Oxford University Press.
- 5. Feller, G. (2014). The extremophiles handbook. Berlin, Germany: Springer.
- 6. Klug, W. S., Cummings, M. R., Spencer, C. A., &Palladino, M. A. (2017). Concepts of genetics (11th ed.). Boston, MA: Pearson.
- 7. Koonin, E. V. (2016). The logic of chance: The nature and origin of biological evolution. Upper Saddle River, NJ: Pearson.
- 8. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.). New York, NY: W. H. Freeman.
- 9. Rastogi, R. (2016). Proteomics: Principles and techniques. New Delhi, India: New Age International.
- 10. Storici, F. (2012). Molecular biology of the cell: Problems book. New York, NY: Garland Science.

- 1. Bhushan, B. (2002). Nanotribology and Nanomechanics An introduction. Springer.
- 2. Misener, S., &Krawetz, S. A. (2000). Bioinformatics Methods and Protocols. Humana Press.
- 3. Rastogi, S. C., Mendiratta, N., &Rastogi, P. (2004). Bioinformatics Methods and Applications. Prentice Hall of India.
- 4. Mount, D. W. (2002). Bioinformatics Sequence and Genome Analysis. Cold Spring Harbor Lab Press.

SCHEME OF EVALUATION FOR INTERNSHIP

л.	INTERNAL EVALUATION - 15 MARKS	
Sl.No	Head	Marks
1	Content & relevance of Dissertation as evidenced from work diary	8
2	Presentation	4
3	Viva	3

A. INTERNAL EVALUATION - 15 MARKS

B. END SEMESTER EXAMINATION - 35 MARKS

Sl No	Head	Marks
1	Content & relevance of Dissertation as evidenced from work	20
	diary	
2	Presentation	10
3	Viva	5

EVALUATION OF PROJECT IN THE EIGHTH SEMESTER

Evaluation of Project

The project should contain:

- 1. Title page/Front page (Certified by the HOD)
- 2. Declaration by the candidate
- 3. Certificate attested by the Supervising teacher
- 4. Acknowledgement, if any
- 5. Table of contents
- 6. Abbreviation, if any
- 7. Abstract
- 8. Introduction & Review of Literature
- 9. Methodology
- 10. Results and Discussion
- 11. Summary and Conclusion
- 12. References

The project report submitted must be duly attested by the Supervising Teacher and certified by the Head of the Department. There shall be a pre submission presentation and evaluation of the project in the middle of the eighth semester. **Mark for internal evaluation is 60**.

Scheme for internal evaluation

Sl No	Component	Marks
1	Topic/Area selected (relevance)	5
2	Experimentation/Data collection	15
3	Punctuality	5
4	Compilation	10
5	Content	10
6	Presentation	15
	TOTAL	60

The end semester evaluation of the Project shall be according to the Scheme given below.

Sl No	Component	Marks
1	Originality of approach, Introduction & aim of the	10
	project/objectives, Organization and Precision of Printed work	
2	Relevance of the Topic	10
	Est in 1021	

	ESE IN 1971	
3	Review of Literature	10
4	Methodology	20
5	Involvement	10
6	Result and discussion: tabulation of data, presentation of	20
	figure/graphs, clarity of explanations etc.	
7	Bibliography in correct format	10
8	Conclusions/ Applications to the society	10
9	Presentation of Report and Viva voce	30
10	Exceptional quality of the project	10
	TOTAL	140